INTERACTION OF RADIATIONS WITH MATTER

MIKLÓS KELLERMAYER

GENERAL OUTLINE

- Light reflection, refraction, scatter, absorption
- Ionizing electromagnetic radiation
 X-ray, γ-radiation
- Particle radiations alpha, beta, proton, neutron, heavy ions
- Mechanisms scatter, ionization, photoelectric effect, Compton scatter, pair production, nuclear reaction
- Quantitative description units, parameters, attenuation, coefficients, Bragg curve
- Biomedical applications

GENERAL SCHEME OF DISCUSSION

- Definition e.g., α-particles=He nuclei / X-ray=high-energy photons from electron shell
- Interaction mechanisms
 e.g., ionization, scatter, nuclear reaction / photoelectric effect, Compton scatter, pair production
- Energy spectrum
 e.g., linear / linear or continuous
- Penetration path e.g., linear, but winding towards the end / linear
- Energy/intensity loss description e.g., Bragg curve / exponential attenuation function

ENERGY OF RADIATION I. PHOTONIC ENERGY

Energy increases with frequency - wavelength decreases

Convenient energy unit: electronvolt (eV)

Energy of a single unbound electron accelerated by an electrostatic potential difference of one volt

$$1 \text{ eV} = q \cdot V = 1.6 \cdot 10^{-19} \text{ CV} = 1.6 \cdot 10^{-19} \text{ J}$$

1 TeV: about the energy of motion of a flying mosquito.
 210 MeV: average energy released in fission of one ²³⁹Pu atom.
 200 MeV: total energy released in nuclear fission of one ²³⁵U atom.

•17.6 MeV: total energy released in fusion of deuterium and tritium to form ⁴He.

•13.6 eV: energy required to ionize atomic hydrogen. Molecular bond energies: ~ eV per molecule.

2.5 eV: energy of blue-green photon (500 nm).
 1/40 eV: the thermal energy at room temperature.

ENERGY OF RADIATION II.

Physical parameters describing radiated energy

ENERGY

E [J]

 $P = \frac{\Delta E}{\Delta t} \left[\frac{J}{s} = W \right]$

 $V = \frac{\Delta P}{\Delta P} \left[\frac{W}{\Delta P} \right]$

 $\left[\frac{\mathsf{W}}{\mathsf{m}^2}\right]$

What *photonic emergies contribute* to radiated energy?

GENERAL ATTENUATION MECHANISM

INTERACTION OF LIGHT WITH MATTER

REFLECTION

- Incident and reflected beams and axis of incidence are in the same plane.
- Incident and reflected angles are identical (α = α ')

REFRACTION

- Incident and refracted beams and axis of incidence are in the same plane.
- Snell's law: $\frac{\sin \alpha}{\sin \beta} = \frac{c_1}{c_2} = \frac{n_2}{n_1}$

REFRACTION IS THE BASIS FOR OPTICAL IMAGE FORMATION

Geometric optics

- Radiation: optical ray or beam
- Ray optic diagram: direction of energy propagation indicated as vectors
- Principle of reversibility: energy propagation is assumed to be reversible along the beam

TOTAL INTERNAL REFLECTION

BIOMEDICAL APPLICATION OF TIR: OPTICAL FIBERS

If the arrangement of fibers is maintained within the bundle, then the image is faithfully transmitted.

MEDICAL FIBER OPTICS: ENDOSCOPES

TYPES

- Arthroscopy: diagnostic and therapeutic examination of joints (arthroscopic surgery)
- · Bronchoscopy: examination of the trachea and bronchi
- · Colonoscopy: examination of the colon
- · Colposcopy: examination of the vagina and cervix
- Cystoscopy: examination of urinary bladder, urethra uterus, prostate. Through urethra.
- •ERCP (endoscopic retrograde cholangio-pancreatography): delivery of X-ray contrast agent, via endoscope, into biliary tract and pancreatic duct.
- EGD (Esophago-gastroduodenoscopy): examination of upper GI tract (gastroscopy).
- Laparoscopy: examination of abdominal organs (stomach, liver, female gonads) through abdominal wall.
- ·Laryngoscopy: examination of the larynx.
- Proctoscopy: examination of the rectum sigmoidal colon (sigmoidoscopy, proctosigmoidoscopy)
- Thoracoscopy: examination of pleura, mediastinum and pericardium via chest wall.

OBJECTIVES

- Diagnostics: visual inspection, biopsy, contrast agent delivery
- Therapy: surgery, cauterization, removal of foreign objects

LIGHT SCATTERING

- $J_s = J_0 \frac{8\pi^4 N\alpha^2}{\lambda^4 R^2} \left(1 + \cos^2 \Theta\right)$
- J_s=intensity of scattered light J₀=intensity of incident light
- N=number of scattering particles
- α=polarizability (dipole moment per electric field)
 λ=wavelength of light
- R=distance between scatterer and observer
- Θ=angle of scattered light

Strong wavelength dependence -> enhancement of short wavelengths -> blue sky

Particle size greater than wavelength -> even reduction at all visible wavelengths -> gray clouds

BIOMEDICAL APPLICATIONS OF LIGHT SCATTERING

LIGHT ABSORPTION

From the general law of radiation attenuation:

$$J = J_0 e^{-\mu x}$$

$$\lg \frac{J_0}{J} = \mu x \lg \epsilon$$

$$\lg \frac{J_0}{I} \approx \mu$$

absorbance, optical density

$$\lg \frac{J_0}{I} = \varepsilon_{\lambda} cx$$

Lambert-Beer's Law

 ε_{λ} = molar extinction coefficient

c = concentration

IONIZATION

- Conversion of an atom or molecule into an ion by the addition or removal of charged particles (i.e., electrons or ions).
- During ionization usually (e.g. in case of a gas) ion pairs are created which consist of a free electron and a positive ion.

In air, an average 34 eV $(5.44 \times 10^{-18} \text{ J} = 5.44 \text{ aJ})$ energy is required to generate one ion pair.

Ionizing radiations exert their effect on the interacting matter via generation of ion pairs:

INTERACTION OF IONIZING RADIATIONS WITH MATTER

Classification possibilities

Nuclear radiation

X-ray

Energy from atomic nucleus. Energy from the electron shell.

e.g, α, β, γ, p, n, ...

e.g., X-ray

Particle radiation

Electromagnetic radiation

Rest mass positive. e.g., *α*, *β*, *p*, *n*, ...

No rest mass.

e.g., X-ray, γ

Direct ionizing radiation

Indirect ionizing radiation

Charged particles. e.g., *α*, *β*, *p*, ...

No charge. e.g., X-ray, γ, n

IONIZING ELECTROMAGNETIC RADIATIONS

• Types:

X-ray γ-radiation

• Source:

electron shell (X-ray) nuclear decay (γ-radiation)

• Energy spectrum:

continuous

linear (For further info: see chapter on X-ray)

Mechanisms of interaction with matter:

photoelectric effect Compton scatter pair production elastic scatter

GENERAL ABSORPTION MECHANISM

 $\begin{array}{l} \mu\text{=}\text{attenuation coefficient} \\ \mu\text{m}\text{=}\text{mass attenuation coefficient (cm}^2/g) \\ \varrho\text{=}\text{density (g/cm}^3) \end{array}$

Mass attenuation coefficient: measurement of how strongly a chemical species or substance absorbs or scatters EM waves at a given wavelength, per unit mass

X-RAY PHOTOEFFECT

Photoeffect attenuation coefficient:

 $\tau = \tau_m \rho$

τ_m=photoeffect mass attenuation coefficient

PHOTOEFFECT ATTENUATION DEPENDS STRONGLY ON ATOMIC NUMBER

For multi-component system: "effective atomic number" (Z_{eff})

$$Z_{eff} = \sqrt[3]{\sum_{i=1}^{n} w_i Z_i^3}$$

ε=photon energy
Z=atomic number
w=mole fraction
n=number of components

Material	Z _{eff}
Air	7.3
Water	7.7
Soft tissue	7.4
Bone	13.8

For further info: see chapter on X-ray

COMPTON SCATTER

Arthur Holly Compton (1892-1962)

Energy balance:

$$hf = A + hf_{scatt} + E_{kin}$$

Compton scatter attenuation coefficient:

$$\sigma = \sigma_m \rho$$

 σ_m =Compton scatter mass attenuation coefficient

PAIR PRODUCTION

Energy balance:

$$hf = 2m_e c^2 + 2E_{kin}$$

m_e=mass of electron c=speed of light

Pair production attenuation coefficient:

$$\kappa = \kappa_m \rho$$

 κ_m =pair production mass attenuation coefficient

ATTENUATION MECHANISMS

Dependence on photon energy and material

$$\mu = \tau + \sigma + \kappa$$

μ_m=mass attenuation coefficient σ_m=Compton effect mass attenuation coefficient

τ_m=photoeffect mass attenuation coefficient $\kappa_{\rm m}$ =pair production mass attenuation coefficient

SUMMARY OF ATTENUATION **MECHANISMS**

Mechanism	Variation of μ_m with E	Variation of μ_m with Z	Energy range in tissue
Rayleigh (elastic scatter)	~1/E	~ Z ²	1 - 30 keV
Photoelectric	~1 / E ³	~Z ³	10 - 100 keV
Compton scatter	falls gradually with E	independent ~Z	0.5 - 5 MeV
Pair production	rises slowly with E	~ Z ²	> 5 MeV

Given the usual photon energy range, the mainain contrast mechanism in diagnostic X-ray: photoelectric effect (~Z3)

For further info: see chapter on X-ray

ALPHA RADIATION

Alpha particles: two protons and two neutrons bound together into a particle identical to a helium nucleus

Generation: alpha decay

Properties:

Electric charge: 2e+ Initial velocity:> 1000 km/s Kinetic energy: few MeV

Spectrum: linear

Propagation path:

EFFECTS OF ALPHA RADIATION: IONIZATION

Energy loss of ionizing radiation as it travels through matter

Linear ion density: number of ion pairs per unit distance (m-1)

Stopping power: average energy loss per unit path length $(\Delta E/\Delta x) (eV/cm)$

Linear energy transfer: ratio of energy lost and path length

Range: average distance of travelled by the particle prior to energy loss to thermal levels.

MECHANISMS OF CHARGED PARTICLE DECELERATION IN MATTER

Particle energy gradually decreases - ineraction cross section increases.

Other effects of alpha radiation: Characteristic X-ray, scintillation, thermal effects, nuclear reaction (low probability)

BETA RADIATION

Beta particles: high-energy, high-speed electrons or positrons

Generation: beta decay

beta- decay:

beta+ decay: $p \rightarrow n + e^+ + v_e$ neutrino: v_e

Properties:

Electric charge: 1e- (or 1e+)

Linear ion density: 1000 times smaller than that of alpha

Spectrum: continuous (because of neutrino), therefore range varies widely

Propagation path: contortuous, winding (electrostatic effects)

NEUTRON RADIATION

Neutron: subatomic particle with no net electric charge and a mass slightly greater than that of the proton

Generation: in certain nuclear reactions; bombarded atomic nuclei are excited and relax by neutron emission

Inelastic scatter

Effects:

Ionization by indirect effect

Elastic scatter

Inelastic scatter (above 5 MeV) - gamma or alpha emission follows relaxation from nuclear excited state

Neutron capture: thermal neutron is incorporated in the atomic nucleus (radioactive isotope is formed)

Nuclear fission (>100 MeV): nuclear fragments, neutrons, γ-radiation are genarated

PROTON RADIATION

The **proton** is a subatomic particle (symbol p or p⁺) with a positive electric charge of 1 elementary charge.

One or more protons are present in the nucleus of each atom.

Propagation in mater is very similar to that of alpha radiation

Comparison of radiations

Therapeutic significance: proton radiation therapy of cancer

BIOMEDICAL IMPORTANCE AND APPLICATIONS

α particle

β particle

Penetration depth: depends on radiation energy and mass attenuation coefficient

Note: protection against the effect of ionizing radiations!

POSITRON EMISSION TOMOGRAPHY

SUPERPOSED MRI AND PET SEQUENCE

PET activity: during eye movement Volume rendering