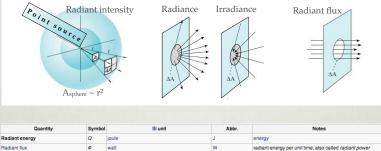
2. RADIATION

MIKLÓS KELLERMAYER

RADIATION IS EVERYWHERE


Source \longrightarrow Radiation \longrightarrow Irradiated object

RADIATION

- Radiation fundamentals
- Waves. Light as wave
- Electromagnetic waves, spectrum
- Black body radiation. Planck's theory
- Photoelectric effect. Light as particle
- Dual nature of light
- Matter waves. Electron as wave
- Applications

RADIATION FUNDAMENTALS

Radiation = propagating *energy*, in the form of waves or subatomic particles, emitted by an atom or body as it changes from a high energy state to a lower energy state.

Radiant intens

Radianc

Irradiance

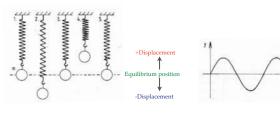
E, I watt pe

	w	radiant energy per unit time, also called radiant powe
r steradian	W-sr ⁻¹	power per unit solid angle
r steradian per square metre	W·sr ⁻¹ ·m ⁻²	power per unit solid angle per unit projected source a Sometimes confusingly called "intensity".
r square metre	W·m ^{−2}	power incident on a surface. Sometimes confusingly called "intensity".

TYPES OF RADIATION

OSCILLATIONS ARE SOURCES OF WAVES

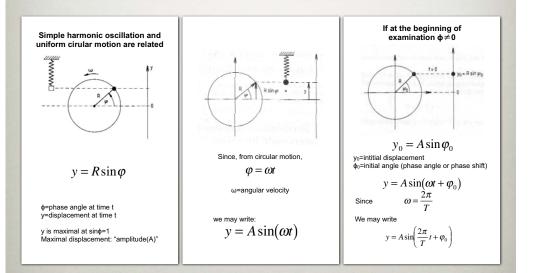
Tacoma Narrows Bridge ("Gallopin' Gertie") ("Gertie the Dinosaur" (1914), cartoon, Winsor McCay) Opening: July 1, 1940. During wind (50-70 km/h): oscillation for hours Oscillation amplitude initially 0.5 m, then, after snapping of a suspension cable, up to 9 m! Collapse: November 7, 1940.



Tacoma Narrows Bridge today

OSCILLATION

Movement (or change) that has a periodic component


Simple Harmonic Oscillation (SHO): oscillation that can be described with sine function

Mass on a spring

Displacement vs. time

DISPLACEMENT VS. TIME FUNCTION OF SHO

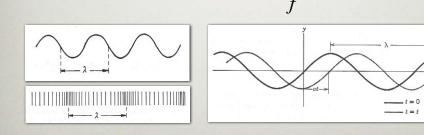
TYPES OF WAVES

• According to source: 1. Mechanical: elastic deformation propagating through elastic medium

2. Electromagnetic: electric disturbance propagating through space (vacuum)

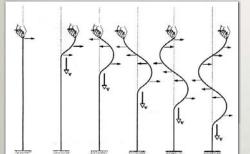
- According to propagation dimension:
 1. One-dimensional (rope)
 2. Surface waves (pond)
 3. Spatial waves (sound)
- According to relative direction of oscillation and propagation:

Longitudinal
 Transverse

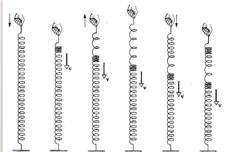

PARAMETERS OF A WAVE

*Harmonic waves: particles go through harmonic oscillations.
*Oscillation time (period): duration of a single oscillation ("T").

***Frequency**: inverse of period (f).


*****The wave propagates with a given **velocity** ("phase velocity", "v" or "c") *****Distance between points of identical phase: "**wavelength**" (λ)

 $\lambda = cT = \frac{c}{c}$

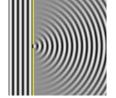


1) **Transverse** (direction of oscillation is perpendicular to direction of propagation, e.g., light)

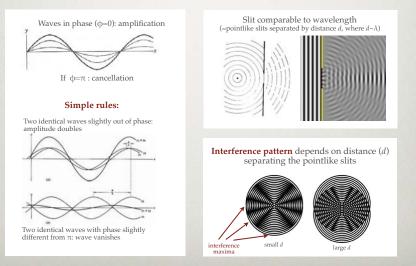
2) Longitudinal (direction of oscillation is parallel to direction of propagation, e.g., sound)

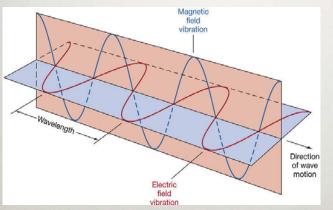
WAVE PHENOMENA I. DIFFRACTION

Huygens-Fresnel principle: every point of a wavefront is the source of further waves



Slit much greater than the wavelength (λ)

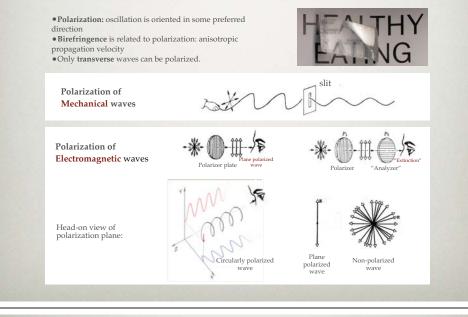

Slit much smaller than wavelength (λ)


WAVE PHENOMENA II. INTERFERENCE

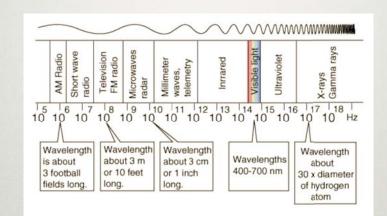
Principle of superposition

THE ELECTROMAGNETIC WAVE

Electromagnetic disturbance propagating in space No elastic medium is required.

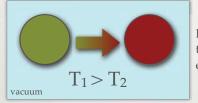


Light is an electromagnetic wave. Propagation velocity:


 $c = \lambda f$

cvacuum=2.99792458 x 108 ms-1

WAVE PHENOMENA III. POLARIZATION

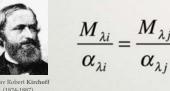

THE ELECTROMAGNETIC SPECTRUM

N.B.: 1) "spectrum" = function (intensity of EM radiation as a function of energy) 2) "electromagnetic spectrum" = types of radiation as a function of energy

"BLACK-BODY" RADIATION THERMAL RADIATION

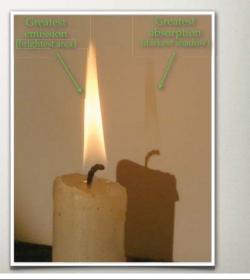
One form of generation of light (besides *luminescence*) Electromagnetic radiation emitted from all matter due to its possessing thermal energy

Heat exchange, temperature equilibration

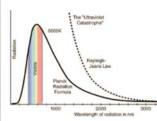


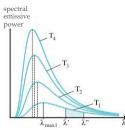
Light emitted by high-temperture object

KIRCHOFF'S LAW


Objects not only emit radiation but absorb it as well!

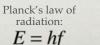
Ratio of spectral emissive power and absorptivity is constant




For e black body (BB):

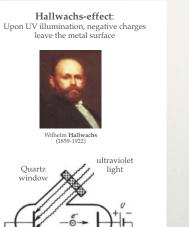
 $\alpha_{\lambda BB} = 1$

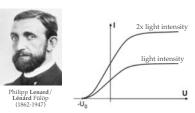
BLACK-BODY RADIATION



Stefan-Boltzmann law: $M_{BB}(T) = \sigma T^4$

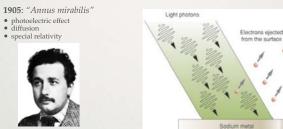
Wien's displacement law: $\lambda_{\max}T = const$


Max Karl Ernst Ludwig Planck



(1858-1947)

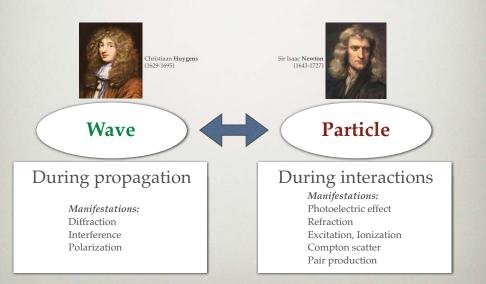
PHOTOELECTRIC EFFECT: THE EXPERIMENT



Measurements, observations

- Electron emission: instantaneous upon illumination
- Electron emission only in high-frequency (e.g., blue, UV) light
- No electron emission in low-frequency (e.g., red) light
- Photoelectric current: depends on light intensity
- Photoelectric current: does NOT depend on light color

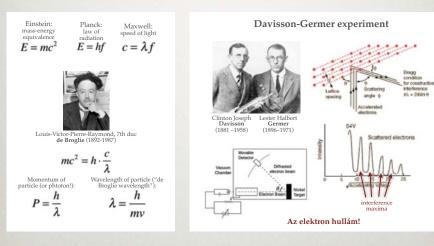
PHOTOELECTRIC EFFECT THE EXPLANATION



 $E_{kin} = hf - W_{ex}$

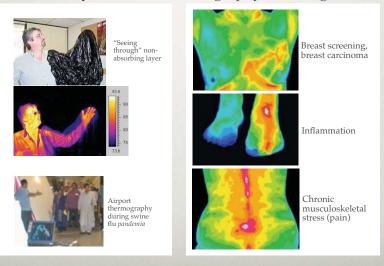
 E_{kin} = kinetic energy of escaped electron h = Planck's constant (6.62 · 10⁻³⁴ Js) f = frequency of light hf = light energy = light quantum, "photon" W_{ex} = work necessary for the escape of the electron from the atom

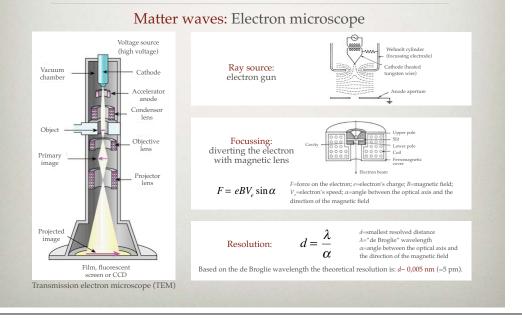
*Photon:*travels with the speed of light (*c*) in vacuum
does not exist at rest, has momentum
has no rest mass


LIGHT IS AT ONCE WAVE AND PARTICLE

LIGHT IS A SPECIAL RANGE OF THE EM SPECTRUM

MATTER WAVES THE ELECTRON AS A WAVE


Why don't we experience the wave nature of macroscopic particles (e.g., bullet)?


Bullet: for m=1 g and v=1 kms⁻¹, $\lambda = 6 \times 10^{-34}$ m!!

APPLICATIONS I.

Black-body radiation: Thermography, infradiagnostics

APPLICATIONS II.

APPLICATIONS III.

Photoelectric effect: photodetection, photocell, CCD, etc, etc.....

Light detection, image recording, CCD camera

Harvesting and transformation of light energy

Light amplification

SUMMARY

 $c = \lambda f$ E = hf $\lambda = \frac{h}{m}$

mv