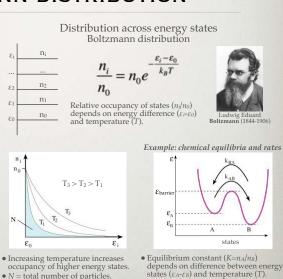
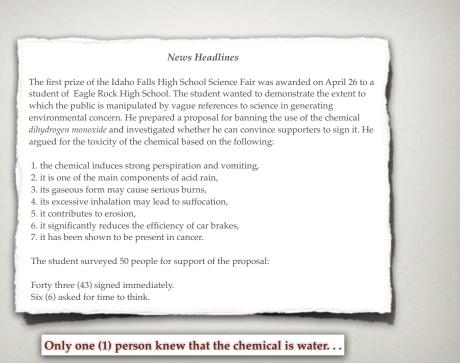

MULTI-ATOMIC SYSTEMS, WATER, MACROMOLECULES

MIKLÓS KELLERMAYER

DIMENSIONS OF LIVING SYSTEMS



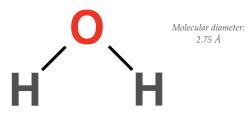
DISTRIBUTION OF STATES BOLTZMANN DISTRIBUTION



• Microscopic state ("microstate") describes: momentary energy of each particle.

 Macroscopic state ("macrostate") describes: distribution across energy states; i.e., how many particles (n₀, n₁, n₂...) occupy each energy level (ε₀, ε₁, ε₂...). Note: a macrostate can be realized by several different microstates.

occupancy of nigher energy states. • N = total number of particles. • Probability (*p*) of occupying a given (*i*th) state: $p_i = n/N$. • Reaction rates (k_{BA}, k_{AB}) depend on respective barrier heights ($\epsilon_{brriter} \epsilon_B$) and temperature (T).



BIOPHYSICS OF WATER

STRUCTURE OF THE WATER MOLECULE I.

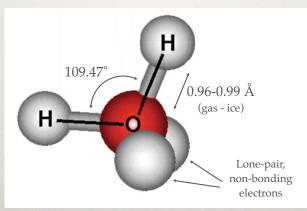
One of the smallest molecules: barely larger than a single atom

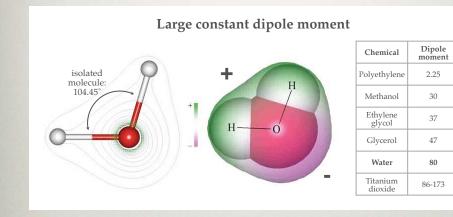
Oxygen: 2s²p⁴

WATER

- Source of inspiration (music, paintings).
- Thales (580, B.C.): "...water is source of all things..."
- Henry Cavendish (1783): water is H_2O .
- Only chemical that naturally exists in all three states (solid, liquid, gas).
- 71% of the Earth's surface is covered with water ("blue planet").
- Water is of utmost importance for *life*: 98% of jellyfish 94% of three-month human fetus 72% of newborn 60% of adult
- Average daily water intake: 2.4 liters.

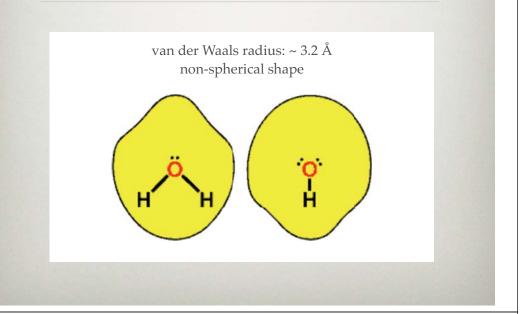
Georg Friedrich Händel Georg Friedrich Händel (center) (1685-1759): "Water music". and King George 1 (right) on the Thames River, 17 July 1717.


Perpetual motion of oceans on Earth's surface

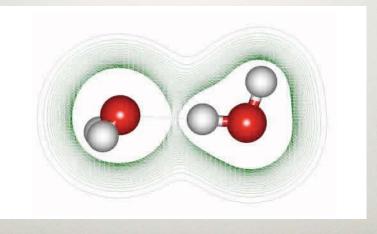


STRUCTURE OF THE WATER MOLECULE II.

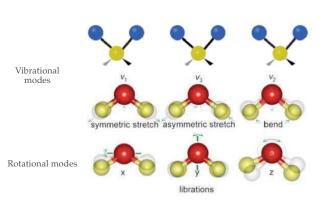
- Tetrahedral structure
- sp³ hybridization (Hybridization: combination of states with identical principal quantum number but different symmetry)



STRUCTURE OF THE WATER MOLECULE III.

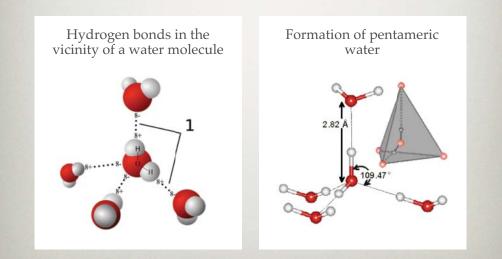

Dipole moment: amount of electrical energy stored in the material by an applied voltage, relative to vacuum. It shows how good an electrical insulator the material is. Consequence: water is good solvent.

STRUCTURE OF THE WATER MOLECULE IV.

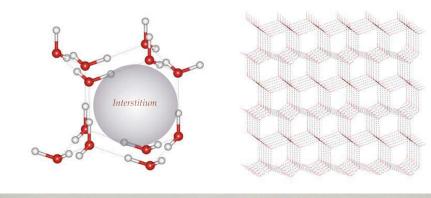


STRUCTURE OF THE WATER MOLECULE V.

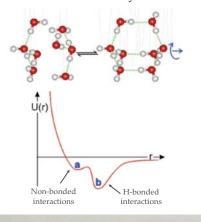
Water dimer: H-bond between the proton and lone-pair electrons



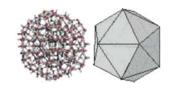
ROTATIONAL AND VIBRATIONAL MOTION OF THE WATER MOLECULE


Absorption in the infrared and red spectral region -> "blue" color of natural waters: *blue planet*

HYDROGEN BONDING IN WATER

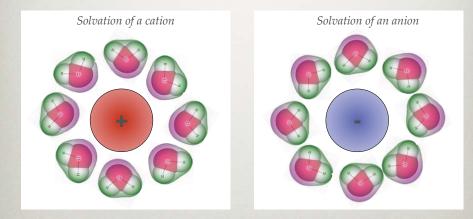

STRUCTURE OF ICE

- 9 different forms
- Conventional ice: hexagonal structure
- Coordination number: 4 (each molecule coordinates another four) Interstitium: could incorporate a water molecule - important in the diffusion of gases



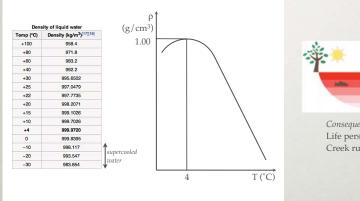
STRUCTURE OF LIQUID WATER

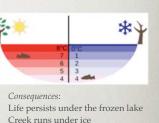
H-bridge: cohesion + repulsion Cluster formation: bicyclo-octamer


From clusters to networks: 280 molecules form icosahedral structure

Spatial networks: May explain anomalous properties of water

PHYSICAL PROPERTIES OF WATER I.

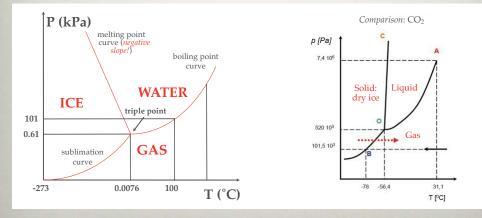

Because of large dipole moment: very good solvent



In the *microwave oven*: dipoles rotate with oscillating electromagnetic field. Water molecules acquire kinetic energy, which dissipates into the surroundings.

PHYSICAL PROPERTIES OF WATER II.

Anomalous density-temperature function



PHYSICAL PROPERTIES OF WATER III.

Anomalous phase diagram

- Phase curve: two phases are in equilibrium
- Area between phase curves: a single phase is present
- Intersection of phase curves: triple point

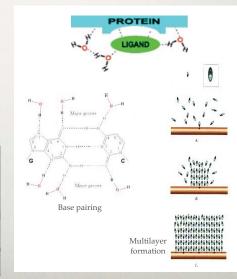
PHYSICAL PROPERTIES OF WATER IV.

Surface tension: contractive tendency of the liquid that resists external force. Imbalance of cohesive forces in the *bulk* versus the *surface* of the liquid.

Chemical	Surface tension (mN/m)	
Ethanol	24.4	
Methanol	22.7	
Acetone	23.7	
Chloroform	27.1	
Benzene	28.5	
Water	72.9	

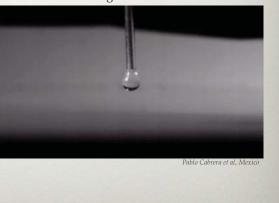
Large surface tension

Consequences on *hydrophobic* surface


root function

WATER HYDRATION

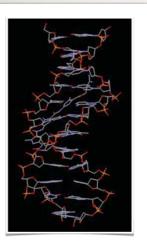
- 1. Electrolyte solutions
- 2. Non-electrolyte solutions, apolar molecules hydrophobic hydration
- 3. Protein hydration Maintenance of 3D structure Polarized "multilayers"
- 4. Nucleic acids Base pairing

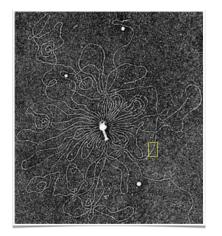

Water striders

FURTHER ANOMALIES

Floatig water bridge

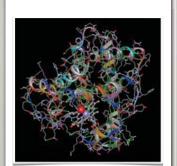
Persisting water droplets on vibrating water surface

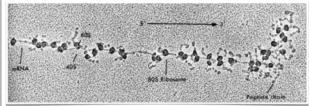



Elmar Fuchs, Wetsus

MACROMOLECULES

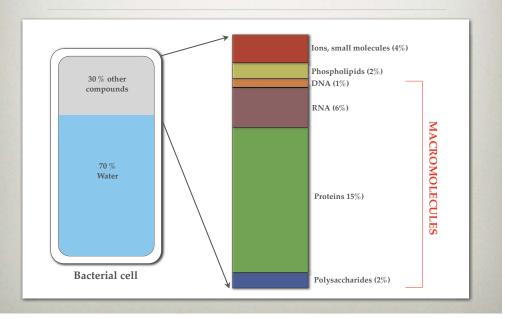
BIOLOGICAL MACROMOLECULES ARE GIANT MOLECULES


BIOLOGICAL MACROMOLECULES ARE EXCITING MOLECULES



DNS double helix

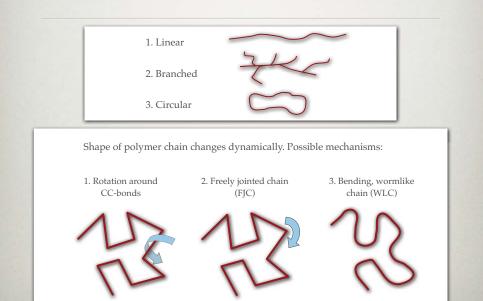
DNA released from bacteriophage head



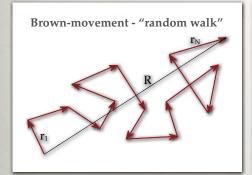
Structure of hemoglobin subunit

Newly synthesized protein (silk fibroin)

PROPORTION OF MACROMOLECULES IN THE CELL BY MASS IS LARGE



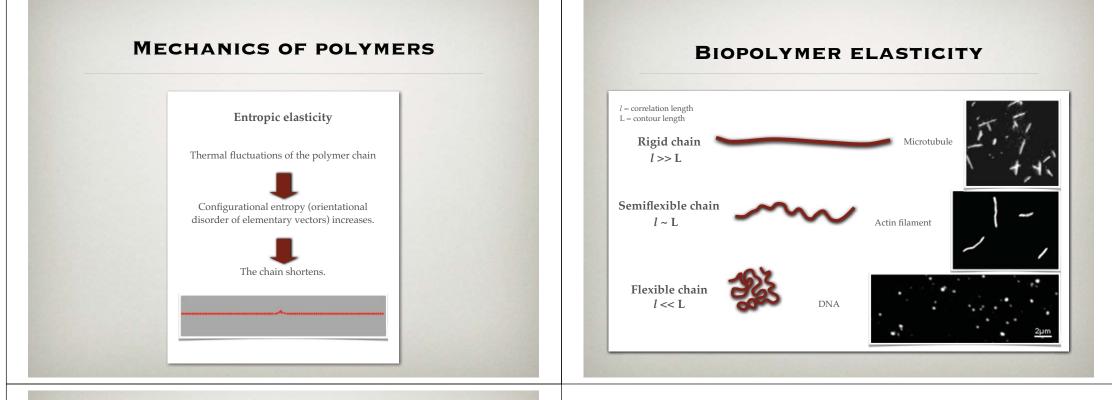
BIOLOGICAL MACROMOLECULES:


BIOPOLYERS

cl N T	Polymers: chains built up from monomers Number of monomers: N>>1; Typically, N~10 ² -10 ⁴ , but, in DNA, e.g.: N~10 ⁹ -10 ¹⁰		
Biopolymer	Monomer	Bond	
Protein	Amino acid	Covalent (peptide bond)	
Nucleic acid (RNA, DNA)	Nucleotide (CTUGA)	Covalent (phosphodiester)	
Polysaccharide (e.g., glycogen)	Sugar (e.g., glucose)	Covalent (e.g., α-glycosidic)	
Protein polymer (e.g., microtubule)	Protein (e.g., tubulin)	Secondary	

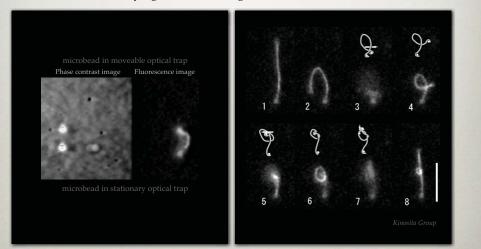
SHAPE OF POLYMERS

SHAPE OF THE POLYMER CHAIN RESEMBLES RANDOM WALK



"Square-root law":

$\langle R^2 \rangle = Nl^2 = Ll$


$$\begin{split} R &= \text{end-to-end distance} \\ N &= \text{number of elementary vectors} \\ I &= \left| \vec{r}_i \right| = \text{ correlation length} \\ r_i &= \text{elementary vector} \\ NI &= L = \text{ contour length} \\ I \text{ is related to$$
bending rigidity.} \end{split}

In case of Brown-movement R=displacement, N=number of elementary steps, L=total path length, és l=mean free path length.

VISUALIZATION OF BIOPOLYMER ELASTICITY

Tying a knot on a single DNA molecule

