Dosimetry of ionizing radiation

Discovery

Application

(enjoy benefits)

Dosimetry

Ionizing

radiation

 $(\mathbf{\cdot})$

 $\overline{\mathbf{C}}$

11/

Ionizing radiation

Classification according to the primary effect

Direct ionization

Incoming particles already held charges. E.g. α - and β particles.

Indirect ionization

Primary electrons ejected by the photons and secondary electrons present charges. e.g. y-radiation, X.ray.

Definition of quantities

Estimation of health risk for prevention.

Estimation of biological damages.

Design of therapeutic procedures.

Design of measuring techniques

Estimation of consequences

1. Dose values sholud be

- proportional to the damagas and expected risk !
- additiv
- independent of other factors!?

Dose concepts

1. Absorbed dose

measures the absorbed energy in a unit mass

 $\Delta E = E_0 - E$

Validity: for any kind of material and any type of radiation without restriction

 $[J/kg] \equiv Gy$

Louis Harold Gray (1905-1965).

How to be measured ????

Unit:

¹³¹I of 0.2 GBq activity is accumulated in 80 g thyroid glands. The effective half-life is 7.5 days . Average β-particle energy is 0.18 MeV. Assume that the particles are fully absorbed in the thyroid glands . What is the absorbed dose in the given tisssue?

$$A = \frac{\ln 2}{T} N \qquad N = \frac{0.2 \times 10^9 [\text{Bq}] \times 6.48 \times 10^5 [\text{s}]}{0.693} = 1.87 \times 10^{14}$$

sum = N * E
$$E = 0.18 \times 10^6 [\text{eV}] = 2.88 \times 10^{-14} [\text{J}]$$
$$E_{\text{össz}} = 1.87 \times 10^{14} \times 2.88 \times 10^{-14} = 5.38 [\text{J}]$$
$$D = \frac{E_{\text{sum}}}{m}$$
$$D = \frac{5.38}{0.08} = 67.28 \left[\frac{\text{J}}{\text{kg}}\right]$$

E.

2. Exposure

measures the amount of positive or negative charges generated by the radiation in a unit mass.

Validity: in the air, only γ and X –rays, measured in electron equilibrium*

Wall of cavity

Air filled cavity

ΔQ – secondary electrons!!

Electron-equilibrium : net number of the secondary electrons living and entering volume of the cavity are equal.

To be considered:

- composition of surrounding material (chamber wall) – air-equivalent wall!

- thickness of the wall

E < 0.6 MeV- Photon energy:

 $\mu_{m,air.}/\mu_{m,tissue}$

(bones)

3,54

2,04

1,24

Absorbed dose in tissue

Calculation of the absorbed dose from the exposure

$$X = \frac{\Delta Q}{\Delta m} [C / kg]$$

$$D_{air} = f_0 X$$

$$D = \frac{\Delta E}{\Delta m} [J / kg]$$

$$air = f_0 X$$

$$D = \frac{\Delta E}{\Delta m} [J / kg]$$

$$Average ionization energy in air$$

$$\sim 34 \text{ eV}.$$

$$\frac{\Delta E}{\Delta m} \approx \mu_m \cdot J$$

 D_{a}

 \mathbf{D}_{tis}

$$D_{air} = \frac{\Delta E}{\Delta m} [J/kg]$$

$$\frac{D_{air}}{D_{tissue}} = \frac{\mu_{m,air}}{\mu_{m,tissue}}$$

$$\frac{Photon energy}{(MeV)}$$

$$\frac{\mu_{m,air}/\mu_{m,tissue}}{(soft tissues)}$$

$$0,1$$

$$1,07$$

$$0,2$$

$$1,08$$

$$0,4$$

$$1,10$$

Dhoton onoray

Equivalent dose (H)

Rolf Sievert 1896-1966

"Efficiency" of various forms of radiation is not uniform.

$H_T = w_R D_T$	radiation	W _R
Radiation weighting Absorbed dose	photon	1
factor – estimation of the in tissue relative risk of the given	electron	1
radiation	neutron	5-20
Unit of <i>H</i> : <i>Sievert (Sv)</i>	proton	5
	α -particle	20

Why are the fates of the rabbits different?

2 Gy absorbed dose – X-ray

2 Gy absorbed dose – α-particles

Wind Contraction

Equivalent dose (H)

LET (Linear Energy Transfer : the energy transferred to the material surrounding the particle track, by means of secondary electrons. $(nE_{ionpair}/l)$

If someone is exposed to more than one type of radiation:

Equivalent dose (H)

"Efficiency" of various forms of radiation is not uniform.

$$H_T = w_R D_T$$

 W_R

Small LETHigh LETe.g. γ, -raye.g. α, proton

photon1electron1neutron5-20proton5α-particle20

radiatiom

Effective dose (E)

Various sensitivity of tissues has to be considered

$$E = \sum_{T} w_{T} H_{T}$$

Tissue weighting factor – estimation of the relative sensitivity of tissue

Unit of *E* : *Sievert (Sv)*

$E = \sum w_T H_T$							
T	tissue)	W_{T}	tissue	9	W_{T}	
	gonads		0,2	breast		0,05	
	bone marro	W	0,12	liver		0,05	
	colon		0,12	oesophagi	us	0,05	
	lung		0,12	thyroid gla	nd	0,05	
	stomach		0,12	skin		0,01	
	bladder		0,05	bone surfa	ice	0,01	
C C		~	٦	1			
		\sum_{T}	W_T	=1			

Dose rate

Received dose over time.

Unit: varies with the type of radiation and the time period (pl. Gy/month, mSv/year etc.)

Collective dose

Sum of the doses received by a given number of people (N_i) in the course of a given time interval.

Collective dose

Sum of the doses received by a given number of people (N_i) in the course of a given time interval.

 $S = \sum N_i E_i$

E_i effective dose in each person

Types of damages **Deterministic damages**

Stochastic damages

Deterministic damages $\int_{100\%} \int_{00\%} \int_{00$

Deterministic damages

A threshold dose exists.

Above threshold severity depends on the dose.

Appear soon after exposition.

Must not be induced during diagnostic procedures.

e.g. erythema, epilation, cataract

*1% lethal 60 days after exposition

Dose (Gy) (whole body)	Biological effect
< 0,15-0,2	No observable effect
0,5	Slight blood changes – limit of detection by hematological methods.
0,8	Critical dose – threshold of acute radiation syndrome
2,0	Minimal lethal dose (LD1/60)*
4,0	Half lethal dose (LD50/60)
7,0	Minimal absolute lethal dose (LD99/60)

Stochastic damages

NO threshold!

The probability of stochastic damage depends on the dose.

Severity (e.g. cancer) independent of the dose.

Delayed biological effects.

e.g.tumours, heriditary diseases

Chest X-ray: cc 160 µGy in the skin

Stochastic damages

 H_T (equivalent dose) and E (effective dose) provide a basis for *estimating the probability of stochastic effects* for doses below the threshold of deterministic effects.

Dose range is under the threshold of deterministic damages.

Stochastic damages

Irradiated cell is modified rather than killed

Severity is not effected by the dose

With increasing dose only the probability* increases

*1 gamma photon: the probability to cause cancer is 3 x 10⁻¹⁶ (1: 3,000 billion, but this is the Russian roulette!)

Damjanovich, Fidy, Szöllősi: Medical Biophysics

II. 4. 4.1 4.2 4.3 4.4 4.5 In the frame: 184. 186.

Manual : Dosimetry