MEDICAL STATISTICS

Physiology
Anatomy
Chemistry
...

No any doubt
Statistics

Theory: matematics

Practice: applied statistics (examples)

Example: body temperature$36.7^{\circ} \mathrm{C}$

$36.9^{\circ} \mathrm{C}$
$36.6^{\circ} \mathrm{C}$

1. Inaccuracy of the measurement.
2. Daily fluctuation!!!

The measured value is not constant!
3. Biological variability!!!

Measured value: $37.0^{\circ} \mathrm{C}$. Is it healthy or not?

Medical statistics

Description of a variable

- Type
- Possible values
- Occurrence of the values

Numerical variables

Name	Continuous	Discrete
Definition	Infinitely large no. of values in a certain range	Only finite number of values
Example	Height, temperature, pressure..	No. of teeth, no. of children..

Determination of the possible values

- Continuous: giving a possible range.
» e.g.: height from $\sim 50 \mathrm{~cm}-$ to $\sim 250 \mathrm{~cm}$
- Another : listing the values, if it is possible » E.g.: blood type: A, B, AB, 0

Occurence

Population

How many people? are not the same!

Trial: experiment, observation, data collection. Deal with only the case, when the trial may be repeated!

Outcome: result of one trial. (e.g.: height of a student)

Selection of the sample

Main principle: Random sample

Medical statistics: if there is no any reason to exclude,
must be random!

Occurrence

Frequency distribution

Frequency as the function of the possible values.

Blood-type	$\mathbf{0}$	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$	total
frequency	17	21	10	2	50

$$
n=\sum_{i} k_{i}
$$

Relative frequency, proportion

The ratio of the frequency and the total no. of the elements.

$$
\sum_{i} \frac{k_{i}}{n}=\frac{1}{n} \sum_{i} k_{i}=\frac{1}{n} \times n=1
$$

Frequently it is given as percentage:

$$
\frac{k_{i}}{n} \times 100 \%
$$

Properties of the probability

$$
\mathrm{O} \leq P \leq 1 \quad \longrightarrow \quad \begin{aligned}
& \mathrm{P}=0-\text { never occur } \\
& \mathrm{P}=1-\text { always occur }
\end{aligned}
$$

$\begin{aligned} & \text { Example: blood- type } \\ & P_{A}+P_{B}+P_{A B}+P_{0}=1\end{aligned} \longrightarrow \sum_{i} P_{i}=1$
(exclusive events)

Continuous quantity

Infinite no. of possible values!!!

Class: a short interval in the whole range.
Class-width: the length of the class
Frequency: no. of elements in the given class.

Example

1	160 cm
2	181 cm
3	175 cm
4	163 cm
5	165 cm
6	179 cm
7	164 cm
8	185 cm
9	177 cm
10	168 cm

class	k_{i}
$160-164$	3
$165-169$	2
$170-174$	0
$175-179$	3
$180-184$	1
$185-189$	1

Decrease the width!

Presentation

Frequency distribution (class width $=5 \mathrm{~cm}$)

5 cm is too large!

Consequence

Normal distribution

Class-width

No. of classes

We must increase the no. of the elements!

Theoretical description

Normal or Gauss-distribution

$$
g(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Parameters:
μ - expected value or mean
$\sigma-$ theoretical standard deviation

If n and no. of classes are infinite!

Normal distribution ($\mu=170, \sigma=8$)

Meaning of the parameters

$\mu \quad$ (mean):
the value belonging to the maximum of the curve.
σ (theoretical standard deviation):
the average deviation of the data from the μ.

Standard deviation

$$
\begin{aligned}
& (\mu \pm \sigma) \sim 68 \% \text { of data } \\
& (\mu \pm 2 \sigma) \sim 95 \% \text { of data } \\
& (\mu \pm 3 \sigma) \sim 99.5 \% \text { of data }
\end{aligned}
$$

Normal distribution

Estimation of the μ

average: must be in the center of the data range.

$$
\sum_{i}\left(x_{i}-\bar{x}\right)=0 \quad \bar{x}=\frac{\sum_{i} x_{i}}{n}
$$

Estimation of the σ

$\sigma=$ average deviation of the data from the μ.
\mathbf{s} (standard deviation) = average deviation of the elements from the average.

$$
Q_{x}=\sum_{i}\left(x_{i}-\bar{x}\right)^{2} \geq 0
$$

Relation of parameters

$$
\begin{aligned}
& (\bar{x} \pm s) \sim 68 \% \\
& (\bar{x} \pm 2 s) \sim 95 \% \\
& (\bar{x} \pm 3 s) \sim 99.5 \%
\end{aligned}
$$

Standard deviation

$s=\sqrt{\frac{Q_{x}}{n-1}}$
s : the average deviation of the elements from the average.

Question of the week!

How can we estimate the μ and the σ ?
σ

