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The Aim of Estimation

Population: istributi .
the (usually infinite) set of the outcomes Distribution Funct‘wns (CDF, PDF, PMF)
of all the possible measurements. i

Our experiments are always directed

toward this set. /

- i Individual Probabilities
E.g.: - human height in cm
- human eye color
- number of live births per woman
- damage after exposition But how can we get this information?
to radiation

Goals of this Lecture

- Understanding the aim, types, and process of estimation
- sample vs. population
- point and interval estimation
- sampling, estimated value and estimator
- What are the properties of a “Good Estimate”?
- unbiasedness, consistence, efficiency, sufficiency
- Understanding Standard Error (SE)
Understanding Confidence Interval (Cl)
- proper interpretation of confidence intervals
- proper indication of confidence intervals
Learning how to estimate certain parameters including:
- probability
- expected value
- theoretical variance & standard deviation
Calculation of necessary sample size to reach a desired SE
- Using Excel to carry out estimations

The Aim of Estimation

But how can we get this information?

E.g. coin tossing '\
Create a model Make observations
(only theoretical considerations) :

N

- A

P(Heads) = 1/2 & P(Tails) = 1/2 This means actually tossing the coin
and using the observed outcome

two elementary events that are

- equally probable (= the coin is But we cannot carry out all the
assumed to be regular) and possible measurements, because:
- universal - impossible (infinity repeats)

- impractical (my cause damage)

This method has - costs too much (money, time...)

very limited use



The Process of Estimation

. - distribution - distribution
Population: Sample:
- parameters - parameters

£ -
Therefore, only a finite subset

of the population is examined.
That is what we call a sample.

The size of the population (often infinite)
usually does not allow the observation
of all of its elements:

direct examination is not possible
§ o

INFERENCE We carry out measurements on the
Characteristics of the sample sample elements, then this data set
can be used to draw conclusions (which is also called sample)
on the population. will be characterized by graphs and numbers

4

Point Estimations

Theoretical (population) values: Estimator:
“AIM” : “SHOT”

Types of Estimations

What % of humans have Rh+ blood type?
We can’t examine all the humans.

Take a subset (sample) and
examine only the elements thereof.

Point estimation:

about
85%

How much trust can we
put into this number?
only a value No idea!

called estimate
The level of trust we can

put into this range
expressed as a probability

Point Estimations

Theoretical (population) values:

(foriscrete random variables)
A"
- probability or proportion (P,)

- expected value (“population mean”)
of discrete (E(§) or )

E(&)=u=Ypx,

- theoretical variance (Var(§) or 6?)

Var(g)=o* = E[(s-E()) |- 2,,} ()

- theoretical standard
deviation (SD(€) or o)

SD(&)=0 = [Var(8) = Zp,(x,_”)z

Interval estimation:

between
83% —87%

with 95% confidence
range

(estimator & error)
+ probability

Estimator:
“SHOT”




Point Estimations The “Good Estimator” is ...
... Unbiased

Theoretical (population) values: H “Plug-in” Estimator:
(for discrete random variables) N “ 2
“AlM” B ) SHOT . Example #1: point estimation of a probability (p;) with relative frequency (5))
i . © - relative frequency pi= (k,/n)/ The “olug in” estimator f \ have just | d:
- probability or proportion (P) : Excel: ~COUNTIFS(data)/COUNTA(data) e “plug in ei-hma or or;n.u':ivs./e avej.u? ear:eh.. ) ) .
_ expected value (“population mean” T - sample mean B, = (k,/n) e mean of inifinite repetitions of this estimation
oniscrete (E(&)(o:)u;) ) : P Excel: =AVERAGE(data) =y will be equal to the probability we are looking for. .
" 1+ Excel: =COUNTIFS(data)/COUNTA(data)
E(§)=u=Yp L, =;Ek,'x(/
- = Example #2: point estimation of an expected value (u) with sample mean (x)
- theoretical variance (Var(§) or 0?) - “plug-in” variance (s**?) = i K, Lol oI
N 2] 2wk 2 1% 2 ==
Var(§)=0 =E[(§*E(§)) ]=Eﬂ.'(xfu) DS (= ) == Yk (%, - B) Sn ' on .
p=1 : an K= X Excel: =AVERAGE(data)
- theoretical standard © - “plug-in” standard
deviation (SD(§) or o) : deviation (s**, SD)
An estil is unbi if the value of

repeated estimations is equal to the theoretical
parameter to be estimated.

SD(§)=0 = [Var(§) = 217,*(x,—ﬂ)2 s

The “Good Estimator” is ... The “Good Estimator” is ...

... or Least Biased

Example: point estimation of theoretical standard deviation (o)
Similar to the variance estimator, the “plug in” standard deviation estimator is biased:

s = —Ek,n(xi—x)x N

... Unbiased

Example #3: point estimation of theoretical variance (0?)
Look at the “plug in” estimator (s**2) formula we have just learned:

e is a theoretical value, what we don’t know.
B
n

- Instead, we have to use the sample mean. n&
| h vl hth | Friedrich Bessel o
Replace the expected value with the sample mean: = . ", .
d P P 0 s Here, using Bessel’s correction factor n/(n-1)
§? _lik (e —3) This formula is now minimal for the = decreases but does not completely eliminate the bias:
7z i\ sample mean, not for the expected value. e (only e, for infinitely
il reason: asymmetry of the square root function)

This causes a bias: the formula LIS
underestimates the theoretical variance.
Use a correction factor n/(n—1) (called Bessel’s correction) to remove this bias:

(can be proven that it works but we won’t prove...)
. Excel: =STDEV.S(data) &

F We are happy using this less (but not un-) biased estimator.

Excel: =VAR.S(data)



Point Estimations

Theoretical (population) values: : Least Biased Estimators:
(for discrete random variables) N “SHOT”
“AlM” .
" N © - relative frequency pi= (k,/n)‘/
- probability or proportion () i Excel: =COUNTIFS(data)/COUNTA(data)
- expected value (“population Lo sample mean Excel: =AVERAGE(data)

mean”) of discrete (u or E(§))

E(§)=u=3p X,
2 v
- theoretical variance (0?) * - empirical variance (s?)
o= E|(e—E(EN =S p (x g P Excek 2 N
Var(g)=o _E[(E E(£)) ]_gp’ (w=n) -VARS(data) gk’ (i x)
- theoretical standard Lo empirical standard
deviation () deviation (s, SD)

D=0 =Far@ = Spel i ol 2 ﬁEkv(&—;Y/

The “Good Estimator” is ...
... Efficient

An estimate is efficient if its iation (called dard error, SE) is minimal.

- Repeated sampling yield a series of estimates, which differ from each other due to
randomness of sampling

- So the estimate itself is a random variable, it also has a theoretical distribution,
expected value, theoretical standard deviation etc.

- The theoretical standard deviation of an estimator is called standard error (SE)

In the following slides we will learn how to
calculate the standard error for these two cases.

Theoretical Distribution Theoretical Distribution
of Proportions: of Sample Means:
Binomial Distribution Student’s t-Distribution (df = n—-1)

Point Estimations

Problem #1: We would like to estimate the proportion of blue-eyed students and the
expected value, the theoretical variance, and the theoretical standard deviation of
freshmen at Semmelweis.

We took a sample of 15 (see table). Use Excel to give point estimation for the theoretical
parameters!

Eye color | Stature

~h= - - observation | blue? | incm

p(blue eye) = p =4/15 = 0.2667 = 26.67% n IR
2 FALSE | 153

~%= - 3 FALSE | 152
u(stature) = X =AVERAGE(data) = 170 cm n e T i
5 FALSE | 167

6 TRUE | 184

o(stature) =VAR.S(data) = 107.5 cm? i RUEH 165
) ealse | a0

o TRUE | 175

o(stature) = s =STDEV.S(data) = 10.4 cm o FALSE o
1 FALSE | 178

1 FALSE | 168

13 FASE | 173

11 TRUE | 178

15 FalSE | 180

Standard Error of a Proportion

Example #1: We would like to estimate the proportion of blue-eyed students in the
population of freshmen. We take a random sample of n = 15 out of which k = 4 turn out to
have blue eyes. We have already learned, that the point estimation for population
proportion (i.e. probability, p) is the relative frequency (g = k/n), which in this case is 4/15
=0.2667 . But what is the error -
of this estimation?

20%
Suppose that the true value is
the same as our estimation:
p = 4/15. Using computer 0%
simulation, let us take 800 such
samples, then prepare a relative 5%
frequency distribution of the o
number of blue-eyed (blue bars). 001 2 3 4 5 6 7 8 9 1011 1213 1815
This approximates well the k
corresponding theoretical distribution:
the binomial distribution (black hairlines).

15%




Standard Error of a Proportion

Use the formulae learned in previous lessons to calculate the parameters (u, 02, and o) of
this binomial distribution.

Expected Value
Hu=np=4

Variance )
001 2 3 4 5 6 7 8 9 1011 12131 15
02 = np(1-p) = 44/15 = 2.933 K

Standard Deviation

)=1713

sp=ynp(

Standard Error of a Proportion

2 What is the maximal SE of any proportion in a
;';"“‘ given sample with n size?
005 The p(1-p) product is maximal, if p = 1-p = 0.5

In this case, p(1-p) = 0.25 so the SE is:

Theoretical Distribution max(SE )= 0'5(1 '0'5) - L - 1
of Proportions: rep n V' on Jan
Binomial Distribution
(normalized to sample size) If a study contains several estimations of

proportions based on the same sample (at least
same size of sample), often just the maximum
1 SE is given using the above mentioned formula.
max(SE,,,(,,,) = T
4n E.g. the maximum SE for proportion in case of a
sample with n = 100 elements is 0.05.

Standard Error of a Proportion

Since we are estimating proportions, the k variable needs to be converted to k/n
proportions, that is, we have to rescale the horizontal axis by dividing the number by the
sample size n.

We have to do the same to the ¢,
calculated parameters p and o

of the binomial distribution. 20%
15%

<
Expected Value 10%
u=p=4/15 5%
o%

Standard Deviation = Standard Error of Proportion

1- -
55=M= M=0.1142 SE

n n prop =

Standard Error of a Proportion

Problem #2: What is the standard error for the estimation of the prevalence (proportion in
the population) of sickle cell disease carriers in Nigeria, if 43 out of 172 examined persons
carried the trait of the disease?

Proportion of carriers in the sample: g (SC) = k(SC)/n = 43/172=0.25 .

SE can be calculated 5 5 (1=
using the formula: SE = le(l—p) = lp(l—p) = {0-25 (l 20-25)

=0.033=33%

n n 1
Problem #3: We would like to carry out a study to determine the prevalence of a set of
chronic diseases in Budapest. What would be the recommended minimum sample size if
we want to keep the error of estimation below 1%?
Since no actual probabilities or frequencies are know, we have to calculate 1
with 0.5 probability which yields the highest SE for a certain sample size: ~ SE,,,, < ——
From this, we can find n: 1 1 ‘/E
s————=—"7-=2500

4(31;/”0”) 4-0.01
That is, a sample size of 2500 will guarantee, that even in case of an eventual 0.5
prevalence our standard error won’t exceed 1%. (The < sign means that for lower or higher
prevalence even less sample size would suffice to keep the SE below 1%.)



Standard Error of a Mean

Example #2: We would like to estimate the stature (body height) of freshmen. We take a
random sample of n = 15 for which the mean height is X = 170 cm and the corrected

standard deviation is s = 10 cm. Use computer simulation again to create the distribution
of the data (outcomes) and the distribution of the means of samples of n = 15 elements.

The simulation of 200
samples (3000 elements)
clearly shows that the
distribution of means is
much narrower than the
distribution of the elements
themselves. But how much?

distribution of data: xfem distribution of means:
X=170.01cm X=170.01cm
SD =9.947 cm SE =2.507 cm

Standard Error of a Mean

However, if SE is calculated from sample SD, the distribution is Student’s
t-distribution with n-1 degrees of freedom (df). This distribution is similar
to the normal distribution for large df-s but has heavy tails for small df-s.

William S. Gosset
1876-1937
“Student”

Lo,
o
Theoretical model: t-distribution
K-> X=170.01cm

o > SE=2.507 cm
df=n-1=14 2

Standard Error of a Mean

The standard deviation of the data divided by the square root of the sample size n yields
the standard deviation of the means. The latter is called the standard error of the mean
(SE). The distribution of the means is (at least nearly) normal due to the Central Limit
Theorem.

g s
SE =5 ="~
RS
distribution of data: x/em distribution of means:
X=170.01cm X=170.01cm

SD=9.947 cm SD/n°5 =9.947 cm/3.872 = 2.568 = SE =2.507 cm

Standard Error of a Mean

Problem #4: We wanted to estimate the expected value of mass of banana. We measured
5 bananas, the results are: 134 g, 152 g, 158 g, 141 g, 170 g. Give the SE of the estimation.
n=5

x=151g

SD=14.14¢

SEppean = 6:328

Problem #5: In a scientific article the following was written: “... the average mass of the
rats used in the study was 420 g (SE = 20 g) and their average age was 5 months ...” The
number of rats, however, is not mentioned. How many rats do you guess have been used
in the study if we know from elsewhere that the standard deviation of rat body mass at
this age is approx. 40 g?

The SE of the mean is the SD of the random variable divided by square root of n. We can
transpose this formula to express n:

n=(SD/SE) = (40g/20g)*=2?=4

Note: this is a very low number of subjects which can explain why the authors did not
share this information. This brings the reliability of the whole article into doubt... 2



The “Good Estimator” is ...
. Efficient

its standard deviation (i.e. SE) is minimal.

An estimator is efficient i
i

Theoretical Distribution

Theoretical Distribution o

of Sample Proportions: of Sample Means:
Binomial Distribution Fi Student’s
(normalized to i t-Distribution
sample size) o (df=n-1)

s
Standard Error Theoretical Distribution
of Probability Estimation: of Sample Means:

SE,

‘mean =

o s
Jn %
We can say in general, that the square of the SE is directly proportional to the

the variance of the statistical variable and inversely proportional the sample size.
That is, to double the efficiency, the sample must be four times bigger!

The “Good Estimator” is ...

... Consistent

Imagine a sequence of estimations repeated with higher and higher sample sizes (n).

it tends to deviate from the estimated theoretical value
less and less with increasing n.

In other words: higher sample size will yield less bias and error.

H n=2
relative frequency density
distribution of observations

same observations shown
along a number line

Distribution of 200 estimations of the expected value of the height
with sample size (n) = 2, 5, 25, and 100 2

The “Good Estimator” is ...
... Unbiased & Efficient

-
a N N
= N
z — — e VAN
o
z ‘estimated ane
5 e
2 . el
2 -
3 A
9 . .
H bias
"oies,
T >
INCREASING EFFICIENCY cf. Biophysics Lab Manual
17. MEASUREMENT TECHNIQUES
Fig. 3.: Measurement Accuracy and Precision  *
“" - v/
The “Good Estimator” is ...
... Consistent
u n=2 u n=5
o -
gm' § 5

wtem tem

wtem e



The “Good Estimator” is ...

... Consistent
Consistency should be assessed by strict mathematical derivation for each estimation method,
however, we won’t do this. Instead, let’s just show qualitatively that our probability and
expected value estimation methods are consistent.

Estimation of Estimation of
Probability Expected Value
n 0
Point Estimation is = k; 1
Unbiased X_2|; i _;zlk’ x‘,/

SE pean =
SE,

prop —

/<

Error goes to 0 with increasing
sample size (n is in the denominator)

The “Good Estimator” is ...

... Unbiased

The mean of estimates obtained from many many samples
is equal (or very close) to the true value.

... Efficient

The standard error of the estimation
(i.e. standard deviation of the estimates) is low.

... Consistent

Bigger sample sizes yield estimations
which deviate less from the true value.

... Sufficient

It contains all the information that
the whole sample could provide.

The “Good Estimator” is ...

... Sufficient

Sufficiency of an estimator means that it contains all the information
that can be obtained from a sample relevant for the
estimated theoretical (population) parameter.

Example: In case of a statistical variable measured at least on interval scale,
the mean is a sufficient estimator of the expected value
because it uses all the observed values of the sample.
That is, knowing the whole sample does not provide more information
than just knowing its mean.

Counter-Example: In the same case, the median would use
only the rank of the observed values.

Counter-Count However, if the statistical variable is measured on an ordinal scale,
the median becomes a sufficient estimator for a central tendency (since mean cannot be used).

Interval Estimations

Interval estimation processes produce intervals (a pair of lower and upper limits) for the true
value. The interval is called Confidence Interval (symbol: CI) and it is assigned with a probability
called confidence level (symbol: 1-a) that reflects the reliability of the process.

The typical steps of generating a Cl are:
- sampling

calculating the point estimate

- determining the probability distribution of the point estimate

- calculating the standard error of this distribution (optional)

- use these values to determine an interval where the estimate can be “reliably” found

2% 'm| distribution of distribution of
5% proportion gou expected value

< estimates ?“‘ estimates
= oo




Interval Estimations ...

... of Proportions

What is the probability that a randomly chosen student has blue eyes?

The steps of generating a Cl are:

- sampling: n elements with k blue-eyed

point estimator: p, = k/n = ...

- probability distribution of the estimator:
binomial distribution b

distribution of proportion
estimates and its
normal approximation

- the values give a binomial distribution, s«
which we have to normalize. It is
possible to calculate with this function,
(Exact method) but complicated

- itis easier to use instead normal approximation:
Wald-interval (simple but unreliable method)

o%

kin

Interval Estimations ...

... of Proportions

This approximation .
works “well” when Method #2: The Normal Approximation (A. Wald) |

n>30. o

68% CI

34% 4% Abrahm Wald

1902-1950

95% CI

W30 20 4o @ o 26 o

To the interval between u + o belongs a probability of =~ 68%. n

The corresponding estimation interval is called 68% Confidence

Interval (CI), the probability confidence level (1-a). k
For example #3: 68% CI = 15% — 38%. (sce figure to the right) CRECIE
To the interval between u + 20 belongs a probability of = 95%.

This corresponds to the 95% Confidence Interval, used very

extensively in health sciences. For small sample sizes the Cl can 95%CI~ K22
even stretch out from the [0,1] range! —> trimming is needed. n

For example #3: 95% Cl = 4% — 50%. (see figure to the right and cf. to exact values on previous slide.)

Interval Estimations ...

... of Proportions

Method #1: The Exact Method kin o l#] SUMIF

il indivi N 0% | oooss |o] o9e33

calculatg the. probability of each individual outcor.ne (k) given 7 Naos200 g Nos1as
your estimation for p and order them by descending probability 13% | 01324 [a] 07510
add these probabilities up beginning with the most probable, gg: 2;2:; i g;is‘;
then the second most and so on 33% | 01821 [3] o685
when your sum exceeds some preset limit, sto 408 | Oloi 15 os6u
v p » Stop 47% | 00516 [7] 0650

the range of outcomes included in the final sum is the exact Cl, 53% | 00188 [8] 09838

60% | 00053 [10] 09986

the final sum is the confidence level (1-a) 70 Moo 1| o556

E le #3 5% 5 ,ﬂ‘fp 73% 0.0002_[12| 1.0000
xample #3: * 80% | 00000 |13 1.0000
- use the data of 20% 87% 0.0000 |14] 1.0000
93% 0.0000 |15| 1.0000

example #1 100% | 00000 [16] 1.0000

15%
see the calculated table <
and the graph 10%
representing the 95% 5%
(actually, 96.5%) Cl:

7% -47%

SHRRICAICaR

Interval Estimations ...

... of Proportions
Problem #6: We would like to estimate the prevalence (proportion in the population) of
the Rhesus factor among Budapest citizens. We randomly chose 42 people and determined
their blood group: 35 of them proved to be Rh+.
a) Give a point estimation for the prevalence of the Rhesus factor.
p(Rh+) = f (Rh+) = k(Rh+)/n = 35/42 = 0.833
b) Give the 95% Cl using the Wald-interval method.
First find the SE:

"
The 95% Cl is approx.  (Rh+) + 25 = 0.833 + 0.006 or 0.826-0.839 .

Problem #7: Give the 95% confidence interval for the prevalence of blue eye color among
first year students, if a sample of 10 students contained 2 blue-eyed students.

Using the learned formulae: § (Rh+) = 0.200 and SE = 0.126. This would yield the following
95% Cl: —0.052 — 0.452 . However, since we are estimating a probability, the Cl cannot
stretch out from the [0,1] interval, so after trimming the Cl is 0 = 0.452. Here the
confidence level is for sure not anywhere close to 95% anymore. This is an example to
show how unreliable the Wald interval is — still we can use it for not too small samples

as a quick and easy estimation. }



Interval Estimations ...

... of Expected Values

Using Student’s t-distribution (W. S. Gosset)
Similar intervals can be defined as in the
case of proportions, here, however, we are

> ere, 1o - T-DISTRIBUTION

using the Student t-distribution with n-1
dogroaot | D probabily owo aled)

degrees of freedom (df). Therefore we el o e oo Tomor Tooor

should not use the previous approximative F T T T @7 | 383 | 6366

2 | | 20 952 | 223 | a6

ranges (i o and u ¢ 20). R AERE

Instead, we have to use a look-up table or 4 o74 | 183 | 213 as0 | 77 | a6t

- s o | e | 20 o | 5w | e

the Excel command for two-tailed p: . o | 1 | 194 3 | sa | s

=T.INV.2T(probability, deg_freedom) < g TR

0 070 | 13 | am 225 | a0 | am

Example #4: thisis a, i.e., W [om [ aw | m a4

d 3 le #2 1~ confidence 1 00 | 136 | 180 [ an | 4w

- use data of example level 2 | o |13 | 305 [ a9 | an

- find the t-value for 95% Cl: FE T 2 0 | a5 | 4z

N {0 20 | am | 4

- in Excel: use the =T.INV.2 15 0 | 1w | 175 295 | a7 | a0

15'1) function, which ‘/Ie'dS 445 N P e o - e e
- (in the Formula Collection use the Figure: Finding the t-value in  look-up table
if o= 5% and df = 14.

look-up table: 2.14) 3¢

Interval Estimations ...

... of Expected Values
Problem #8: We would like to estimate the expected value of blood cholesterol level and
give a 95% confidence interval for our estimation. We took a sample of 8, the observed

values (in mg/dL) are summarized in the table.
We will use Excel to do calculations. L2

N ! . Obsarvation| "y
The point estimator of the expected value is the sample mean:

Cholesterol
Level

1= X = AVERAGE(data) = 152.9 mg/dL n

161
Now find the SE using the methods learned before:

n =COUNT(data) = 8

SD =STDEV.S(data) = 18.47 mg/dL

SE =SD/SQRT(n) = 6.53 mg/dL

The sample means follow a
t-distribution, so we have to find
the limits of the 95% CI:
df=n-1=7

t=T.INV.2T(5%,df) = 2.365
X_=X-t*SE = 137.4 mg/dL

X, =X+t*SE = 168.3 mg/dL

x/ me/a)
Figure: 95% confidence interval (in green).

Interval Estimations ...

... of Expected Values

Using Student’s t-distribution (W. S. Gosset)

In the Statistics Lab, we will use Excel to
determine the t-value. However, t has a
standardized distribution (u=0ando=1), °*
sowe have to use the x=x + t - SE formula ~ °*
to find the corresponding x-values (xisour
statistical variable, in this case, heigth). Fozs
Use —t to find the lower limit of the CI (x) ¥ °2
and +t to find the upper limit of the CI (x,):  °**
005 95% Cl
—t-SE=170cm-2.1445*25cm=164.6cm o
Xy=%+t-SE=170cm+2.1445 * 2.5cm = 175.4 cm

]
W 12 e a6 w8 w0 2w 16w
x/em
Figure: A graph showing the theoretical distribution of
sample means (a non-standard t-distribution with df = n—
1, =% and o = SE) and the 95% Cl that we have just
calculated.

The 95% Cl is 164.6 cm — 175.4 cm.

Interval Estimations ...

... of Expected Values
Problem #9: We would like to determine the 95% Cl for the mean height of freshmen, but
we want the Cl to be not wider than 1 cm. What should be the sample size? We know from
literature that the variance of SD of human height in general is 5 cm and we suppose this
value applies for freshmen, too.
Here we need to think “backward”:
— We have a Cl that is between a (yet) unknown x, and x,.
—The width of the Cl is the difference between these limits: width = x, —x,
— Substitute here their formulae: width = (X+t*SE) — (X—t*SE) = 2*t*SE
— Now we have a problem: the t-value itself depends on the sample size (actually, on
degrees of freedom)! We have to make an assumption here: suppose that the sample will
be big enough and just use t = 2; the formula will look like this: width = 4SE.
— We know that SE = SD/n°5, insert this into the above formula: width = 4SD/n0.5.
—Transpose the formula to get the necessary sample size: n = (4SD/width)?
— Plug in our data: n = (4*(5 cm)/(1 cm))? = 400

180



Interval Estimations

Confidence level (1 - a): the probability u
that confidence intervals determined by a 2 -+ ¥
i i M - ——
certain methoq contain the true va!ue. " . o
It does not tell if any actual CI contains the 1w B B
true value. It characterizes the estimation * "
s v E—
process in general, not the actual outcome. +— ———
i n et
You cannot tell whether the true value is in N p— .
your actual Cl, only if you somehow know u + S — +
: . w0 N
the true value —in which case the whole N . .
estimation process would be pointless. 5 e e
e R
. + E—
level (a): the c | tary s o —t
probability, e.g. if the confidence level is N o ——— 1+
95%, the significance level is 5%. Which one 2 -
' P
is used depends on context. o
xlem

Figure: simulation of 20 estimations of the expected value () of stature (body height) using the same

process: taking a random sample of eight units (red +), calculating the mean and the standard error and

then the Cl is: mean £ 2.36 x SE (blue ribbon).

The true values are: 1 = 170 cm, 0 = 10 cm 0

Interval Estimations

20 Cls calculated from two sets of 20 samples of n, = 34 and n, = 8 sample sizes.
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n=32(df=31),u=170cm, 0 =10 cm n=8(df=7),u=170cm, 0=10cm
1-a=95% 1-a=95%
Bigger sample size at same confidence level = narrower Cl. a2

x/em
n=8(df=7),u=170cm, 0 =10 cm
1-0=68%

Interval Estimations

20 Cls calculated from the same 20 samples at 68% and 95% confidence levels.
u

Higher confidence level =

2 -+ —
1 - = -

Appendix: Normal Range

lower chance of missing the true value but less information content.

Normal range, reference range, or reference interval is an interval of the

x/em
n=8(df=7),u=170cm, 0 =10 cm
1-a=95%

statistical variable that contains a randomly chosen element with 95% probability.

The normal range is also a kind of
estimation, but here we estimate the
spread of the statistical variable, not a
parameter of its distribution. In other
words: the normal range is a 95% CI
for the data themselves. This is also
the range indicated in diagnostic lab

reports.

In case of normally distributed data
the normal range can be estimated by
X 2SD. (more precisely: X + 1.965D)

Problem #10: Calculate the y, o,
and o for serum glucose level
using the lab report normal range.

X, = p-20 = 65 mg/dL
Xy = p+20 = 99 mg/dL

Xy + X = (u+20) + (u-20) = 2u
= (x, +x)/2 = 82 mg/dL

Xy =%, = (4+20) - (1-20) = 4o
0= (x,—x.)/4=8.5 mg/dL

0% = 72.25 (mg/dL)?



Follow-up Questions

—What is a population?
—What is a sample?

—How can we obtain information about a

statistical variable?

— What are the types of estimations?
— What are the steps of an estimation?
—What is a plug-in estimator?

— What is a point estimation?

— What are the disadvantages of point
estimations?

— What are the point estimators of
probability, expected value, theoretical
variance and theoretical standard
deviation?

— What are the properties of a “good
estimator”?

— What is unbiasedness? lllustrate with
examples.

— What is efficiency? How can it be
mathematically expressed?

— What distribution does the estimate of
proportion follow?

— What distribution does the estimate of the
expected value follow?

—What is standard error?

—How can we calculate the stadard error of a
proportion?

—How can we calculate the standard error of a
mean?

— How does standard error depend on the
standard deviation of the variable?

— How does standard error depend on the
sample size?

—We want to triple the efficiency of our
estimation. How should we change the sample
size?

— What is the maximum standard error for
proportion, if we take a sample of 25?

Follow-up Questions

— What are the properties of a consistent
estimator?

— What does it mean that an estimate is
sufficient?

— What is Bessel’s correction? Where do we
use it and what is its purpose?

— What is the meaning of CI?

— What is the meaning of confidence level?
—How can we give an exact Cl for
proportion?

— What is the ground of a Wald-interval and
what is its advantage and disadvantage?
—How does the Cl change if | increase the
confidence level?

— How does the Cl change if | increase the
sample size?

— How does the Cl change if the standard
deviation of the variable becomes less?

—How do we obtain a Cl for the estimation of
the expected value?

—What is a reference range?

— How can we give the reference range for a
normally distributed statistical variable?

— We can see the reference ranges for
different blood tests in our diagnostic lab
report. How can we obtain from these the
expected values and the standard deviations
used by the hospital?

— What is the relationship between a
confidence level and the corresponding
significance level?

—Why is it not possible to tell if a Cl actually
contains the true value?



