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Simple example

Air molecules in the room...

What do the particles ,do”, when the
VI pl T i .
macroscopic parameters are constant:
/ V,p,T?

Nitrogen: N, -78%
Quygen- O - 21%
Other: 1%

Macrostate:
Described by parameters that characterize the whole system
(P, V, T,N)

Microstate:
Given by a set of the parameters of all individual distinguishable
particles in the system ( position, velocity etc. for each)

One given macrostate can be realized by numerous varieties of
microstates.

Il. Law of Thermodynamics: in isolated systems, spontaneous
processes driving toward equilibrWe of —increasing Entropy

No heat exchange s . T
No particle exchange of - increasing ,,probability” :

,Equilibrium” state: of highest Entropy or highest ,,probability”

Ludwig Eduard Boltzmann
1844-1906, Austrian physicist

L.E. Boltzmann defines the absolute value of Entropy ,,S”

Definition of ,thermodynamic” probability of a macrostate = number of
ways how microstates can produce the same macrostate:

,In” logaritmus naturalis — e-based logarithm
k=1.38x10-23JK*

e” natural base number: Euler-number / Napier constant
Boltzmann constant
£=2,718 281 828 459 045 235 360 287 471 35...

e S (l%l)"i)e

Toge

Qew
Boltzmann’s:ave nvienna  Statistical definition of the absolute value of Entropy!

(The change of entropy in a reversible process is a measurable quantity! AS,, :% )

Textbook p. 258 - 265



1. Law of Termodynamics

The Entropy of a chemically pure (of one component) crystalline (totally
ordered) system is zero at T=0 K.

Direct consequence of Boltzmann'’s statistical definition of the Entropy:

N

kInQ

There is only one kind of microstate that results in a totally ordered, chemically pure
system, and total order exists only at T=0 =

if Q=1—> S=0 (e"2=0 Q=1 Q=0

Boltzmann distribution function
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yields the number of particles ( n) with & energy in a system of
E=3n, total energy.
A

In practicle applications the relative probability is more interesting
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n combinations of
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There is a strict order in the distribution of particles on the
energy levels depending on the temperature

Textbook p. 52 - 57

Boltzmann’s distribution function
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The system:
N distinguishable independent particles at thermal equilibrium at non-
zero temperature, with E total energy and N total number of particles

&: energy of one particle in the system (potential and kinetic)
n;: number of particles with &; energy — population of state g

N=%n, E=Xng,
J J ’
Macrostate: given by the number of particles at each energy level:

{ny, ny Ny e}
Microstate: which of the particles are at the individual levels

Boltzmann describes the probality of finding particles with &;
energy in the system

7
p(g]): = ekT

J
N A A= z"—% partition function

Textbook p. 52 - 57

Understanding the Boltzmann distribution function
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The B. distribution is in agreement with the concept of

E=Xne, N=Xn, B &y Ag
J J

1.As the temperature is lowered, more and more
particles are in the energy minimum state T T4<T<T4

at T=0 all particles are there: n=0, no=N .
Same system of N particles
at different temperatures

_E & _ & supposing £,=0
Mo_. KT _, kT
n\)
2.Ata given g, > g energy level, the 1
relative population related to the energy 0y

minimum increases with the temperature
T,<T,<T4
ng is the same

£~ &
n _
AT, kT
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driving toward energy minimum



The relation of the equilibrium macrostate and the microstates in ideal gas.
Kinetic gas theory — Maxwell’s — distribution function

Maxwell (1859) and Boltzmann (1868) describe the velocity distribution independently
from each other, Gibbs completes the description with statistical physics based on kinetic
gas theory (1902)
E
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total — me(v )averagc & =ymy

P oim(v) =3kT

i average

y(v)Av — probability of finding particles with a velocity ,v” of an
interval v to v+Av in the system (probability density function)
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Relativ population of velocity v given by the formula

The velocity distribution function can be
derived from Boltzmann’s distribution as a
special case —see t.b. p. 59

\20%
Maxwell-Boltzmann velocity distribution 0 500 ™72 1000 v(m/s)

James Clerk Maxwell
1831 -1879

Josiah Willard Gibbs
1839-1903

Repetition of high school knowledge
The model system of kinetic gas theory: ideal gas

1. Large number of point-like, independent particles in motion

The motion is arbitrary in direction and velocity, but obeys Newton’s Il. Law

3. The particles collide elastically with the wall of the container and with each other regulated by the
conservation of energy and momentum

4. They interact with each other only in the instant of collision (short term), othervise there is no interaction

5. The gas is chemically pure: the particles are identical

I

Concepts of kinetic gas theory

Y d 1. Definition of pressure p

Jforce acting on a surface _ ) N|_X-F _ my.v. _ mN:f kN,
m area of surface = pressure P T A ) V(va )=p
.ﬂ X

Pressure is the function particle density
and average kinetic energy

Elastic collision with the wall Kinetic Gas Theory + General Gas Law

v AmEY) —mEv —(m*v,)  =2mv, __mv\z
&"V Fforee) =3 = A T2dv, T d
v R ‘\

N Force acting on one particle during one cbllision. The force acting on the wall is
(-1)-times this force. Newton II. and conservation Laws.

pV = NkT =2 N(Emv?)

Absolute value of velocity

Ideal gas - Real gas
Corrections: - the volume of the particles (b) is not negligible

- the pressure is decreased due to the non negligible attractive
interaction between the particles

Maintained: the kinetic energy is related to the temperature

Internal energy E > E .= Eg + E

interaction
Volume V> V-Nb - gaslaw > p(V—Nb)=NkT - p=NkT/(V-Nb)?
But pressure is also decreased p = NKT/(V-Nb)-a(N/V)2=p

characterizes gﬁe strength of interaction

Van der Waals — equation:

N?
(p + a—z)(V—Nb)z NkT
one possible approach V

The ideal gas description is usually valid at higher temperatures

Textbook p. 59 - 60

/ . i
2. Defnjutlon of gas tempgratyre. T is directly ‘ - | wiv® = 2T | 3: degree of freedom
v, porportional to the average kinetic energy of the particles
v, 3. Theory of equipartition —_— | L =LkT

Boltzmann distribution = occurance and validity in a wide range of phenomena

- 5 examples From textbook: 1.Thermal emission of electrons

2. Nernst equation p. 54-57
3. Temperature dependence of the rate of chemical reactions

€ Reaction: A<— B Arrhenius piot
The k,p and kg, rates are proportional to %
Eparrier the number of reactants which are = logK = _ame) ;g“’) loge *%

of high enough energy to overcome the
barrier

sA
EB Ebarrier =4
k., =constxe
Reaction coordinate _ Ehamer=52
ky, =constxe T
K: equilibrium reaction constant . _ ks, _ 5" T
ks Experimental determination
4. Barometric formu la of the energy of activation

Density of air in the atmosphere decreases with the aititude (h) by the formula:

Interpretation: the formula is direct consequence of Boltzmann distribution

h
p(h) e— ";f; _£,78 _ mgh
o ny _ KT _ kT
p(0) ¢ ¢
_n*m. — . _ _
m average mass of particles in the air 7 E=Epy T < Epy > < Epy (W) >= <&y, (h=0)>

g gravitational acceleration The change of T with altitude is neglected



5. Structural consequences of B. distribution in the classes of materials : gas -
liquids — solids ( crystals)

Concept of ,structural order”: the interaction of particles within the system
determines the spacial coordinates (relative position and orientation) of the particles.

- Lack of interaction = disordered structure: ideal gas
- Only a small fraction of particles are bound by interaction = short range order
- Alarge proportion of particles are in well defined position = long range order

Interactions lead to ordering=> bond formation Thank you for your attention!
p repulsion
see NaCl
E=4.2eV
m>n Elalal =T Py ry=0.24 nm
Aﬂ attraction The concrete expression for A, B and the
r values of n and m depend on the form of
interactions

r= distance of two particles forming the bond
r,= bond distance
E,.ne= bond energy



