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Waves are seen most often in water:
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Waves can be described by the wave equation, which relates
the motion of individual parts of the medium to the observed wave.

It is important to note, that as the waves propagate, the parts
of the medium (here the water molecules) stay “in place”, which means
there is no net transport of material.



Transversal wave — such as light, or sound in some cases in solids
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Transversal: wave propagation is perpendicular to the “motion”
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Longitudinal waves:

propagation direction is parallel to the “motion”

@2011. Dan Russell

\

Moving surface (wave “source”)
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Indications for a wave nature:

- diffraction
- superposition / interference

- polarisation




Diffraction of waves
on water surface
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Different types of waves

® According to source:
|. Mechanical: elastic deformation propagating through elastic medium
2. Electromagnetic: electric disturbance propagating through space (vacuum)

® According to propagation dimension:

|. One-dimensional (rope)
2. Surface waves (pond)
3. Spatial waves (sound)

® According to relative direction of oscillation and propagation:

|. Longitudinal 2. Transverse
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The wave equation is a bit complicated:

u 5 0%u

o oz

We take the change of any property (here “u”) in time (du/dt) and also in
space (du/dx), but we need to take the change of the change (d?u/du?), and these
are linked by the propagation speed (or other named phase velocity) (here as “c”).

A simple solution for u(x,t) is:

u(x,t) = A * sin(k*x + o*t + ¢)
where
A is the amplitude of the wave, k is the wavenumber, and m is the angular frequency

o = 2nf , where f = 1/T [Hz], while T is the period time.
o = c*k defines the wavenumber, which can be written as k = 27/A.
here A is the wavelength.



Characteristic values

Period in space — wavelength
A [m] or [nm]

displacement — amplitude

E~A°

Period intime  —period, T
— frequency, f

velocity of waves: ¢ =A/T = Af
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The wave is moving forward (propagating) with a speed of “v”, any point’s position
is dependent on both space and time.

Most important motion type is the harmonic motion. (produced by a harmonic oscillator)

_— @=v/T =2nuf

' \
i-} T =1/frequency[f] -p:
w=af=x/t

x=wavelength[A] —

-4




Phase: the location or timing of a point within a period

y
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Wavenumber k=2r/\ Angular frequency: o=2n/T=2xf
d(X)=kX+do O(D)=wt+do
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Phase: fraction of the wave cycle that has elapsed relative to the origin
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Graphical representation of the solution
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Point source: radiating in all directions along a sphere.

This is a transverse wave example, longitudinal is also possible.




Plane wave (again transversal)
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As an observation we can say that as waves travel or propagate the change in the
state of the parts of the medium is moving.

Here the “state of the parts” simply means the deflection of the string at a given point.
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Su perposition: The principle of superposition applies to waves whenever

two (or more) waves traveling through the same medium at the same time. The
net amplitude of the waves at any point in space or time, is simply the sum of the

Individual wave amplitudes.

Un-equal frequencies Equal frequencies



Interference: superposition of coherent waves
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Waves can be coherent or incoherent.
Coherent waves have the same frequency and a constant phase difference

Only coherent waves can have a stable interference pattern,
incoherent waves on average sum up close to 0.
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The Huygens-Fresnel principle describes the propagation
of waves, it can be used to explain most of the experimental results
(but not the guantum-mechanical ones!)

In short: every point at the wavefront acts as a new sperical point source,
and the resulting new wavefront can be computed as a superposition of all of the
waves generated in this way.

Christiaan Huygens Augustin-lean Fresnel
(1629-1695) (1788-1827)

Wavefront: a surface containing points affected in the same way by a wave at a given time.



Huygens principle




Some experiments, observations, which can only be understood
with the help of wave theory.

One would expect this:

Young’s two-slit experiment ™

S
Diffraction on grating i\\;
Interference patterns — |

R N g
. . . monochromatic light |
this proves that light is (also) a wave! S ¥
two slits

max

min

| max
4| min
max

min

max

First barrier

Second barrier min

Thomas Young

max

Viewing

<L
screen

(a) (b)



Diffraction
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Huygens’ principle: every point in a propagating
wavefront serves as the source of spherical

secondary wavelets, such that the wavefront at

some later time is the envelope of these wavelets.




nterpretation of Thomas Young's
Jouble-slit experiment

S, and S, slits are wavesources

Two waves from S, and S, originates
from the same wavefront, that is they

are In the same phase.
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Interference fringes on a screen



The explanation of the periodic profile : interference of waves, Huygens principle.

interference pattern  intensity

screen with wave destructive
doublle slits front  interference on screen distribution curve
_.- 1 . . \ \\ " o .\“»‘
N \\,\.
OO hght wave \
SO\ YV »\\\\\:w“

_— I:ght souroe ohh

..'.l‘)(.,:"*"“‘\v

»
'.'nv,"

' 'C'ohét‘ent BT BN AT

{{{{{

,,,,,,,,,,,,

destructive interference ¢
constructive interference
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Dispersion of light by a diffraction grating

A | max

min

max
min
max

min

max

min

| max




Incoming plane

Diffraction on optical grating: wave of tight
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Dark Bright
(destructive (constructive
interference) interference)




Diffraction and interference patterns with coherent light
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To understand the patterns we need to calculate the
phase for each wave at the screen.
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Superposition of waves:
the “displacements” caused by each individual waves add up at every point

u(x,t) = A, * sin(k,*x + @, *t + ¢,) + A, * sin(k,*x + @, *t + §,) + ...
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https://www.acs.psu.edu/drussell/demos/superposition/superposition.html




Since we have interference, we must assume light is a wave.
If so, then we have a wave equation for it. Since it is electro-magnetic, we have two
oscillating quantities: electric field strength (E) and magnetic field strength (B).

Blactramagnetic wave |
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For EM waves we have two equations, and the wave can travel to x,y,z
directions, so the equations are a bit even more complicated:

8°E )

o _R2-.V’E=0 . —

o2 Here the V means the d2/d...2 in all directions
2

6;];23 —cﬁ V°B=0

The solution is again a sine or cosine wave:

E(r,t) = Ey cos(wt —k - r + ¢)
B(r,t) = By cos(wt —k -1 + ¢y)

At any point of the observation we have to add all of the incoming sine waves,
and that gives the net value of E and B.

Remember: incoherent waves add up to practically 0, while coherent ones
can add up from 0 to a maximum, depending on the phase difference.



On a reflection grating the concept is the same, but the phase
difference (due to path difference 2*6) is twice as much as on a transmission grating.




standing waves
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Pressure

Longitudinal Displacement
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Reflection

normal ray

Incidentray |
T Reflected ray




diffuse reflection

specular reflection



3 Refraction
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Polarization

polarizer

unpolarized transverse wave linearly polarized transverse wave

N N

direction of propagation
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usually we draw the E-field only, since the B-field is bound to it.
This makes the graphics simpler.

Summation of two waves with different E field direction




Soundwaves

Range of sounds

sound range

infrasound

audible sound

ultrasound

hypersound

frequency (Hz)

<20

20-20 000

20 000-10°

10°<

Speed of sound in various media

medium Csound (MV/S)
air (0°C, 101 kPa) 330
helium gas (0°C, 101 kPa) 965
water (20°C) 1483
fatty tissue 1470
muscle 1568
bone (compact) 3600
iron 5950




Problems: 8/4 and 8/10

4. Waves are propagating on the surface of water towards the shore with a velocity of 1.5 m/s. The distance
between two neighboring crests is six meters. There is a piece of wood somewhere further in the water that
turns up and disappears periodically as the water waves when you are looking at it from the shore. Calculate
the time interval between two turn-ups.

©2016, Dan Russell

10. A sound wave arrives from air (0°C) at the water surface (20°C). Angle of incidence is 10°. Calculate the angle
of refraction!



Termodynamics

100 “C 373K
T t
e 273 K K_°C+273
) 213 0K
QDD
Celsius Kelvin fé]{élé]
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Heat capacity (C) and specific heat capacity(c)

o9 []] C J
—_ = | C=—=|—
AT ~ |K m kg -K
Q=c-m-AT
The specific heat capacity of some materials
material c (J/(kg'K))
silver 234
glass 840
water 4180
body tissue (average) 3500




Phase transitions
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Gas Laws

Boyle’s Law pV = constant;
|4
Charle’s Law. T = constanty,
P_
Gay-Lussac’s Law T conatsntyyy
) |4
Avogadro’s Law N constant;y
b 4 =k k — — —23
T N Ky kip -k =kp =1,38-107°° J/K
Pll
N
pV = NkgT pV = N_AkBNAT
N
(ky- Ny = R) (n _ N—A>

see level+

pV = n RT mountain high+




isobaric process — pressure stays constant

isothermal process — temperature stays constant

isochoric process — volume stays constant



Problems: 9/7 and 9/12

7. We throw a 20 g 0 °C ice cube into a glass (2 dl) of warm (30 °C) water. What will be the final temperature
after the ice melts? Conditions are same as in problem #6.

The specific heat capacity of some materials

material c (J/(kgK))

silver 234

glass 840

water 4180

body tissue (average) 3500

Specific latent heat of some materials

material L (kJ/kg)
gold — heat of fusion 67
aluminum — heat of fusion 396
table salt (NaCl) — heat of fusion 517
1ce — heat of fusion 3344
water — heat of vaporization (at 30 °C and 101 kPa) 2400
water — heat of vaporization (at 100 °C and 101 kPa) 2257

12. A metal gas container is left lying under the shining Sun. The initial pressure of the ideal gas inside 1s 50 bar.
[ts temperature increases as a result of the sunshine from 12 °C to 72 °C. What will be the final pressure?



