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The dichotomic decision tree

Question (from real life)

Transform into Y/N form (maybe dissect)
H0 setup

We use a well known situation as our assumption. (some reference)

We set up the threshold, i.e. how much we “stick to H0” -> this is called the 
significance level.

Calculate the conditional probability P(at least such a deviation | H0)

Decision

P < sign. P >= sign.

H0 is rejected H0 is kept

α or αmax

Is not rejected



the decision is probabilistic

There is always the possibility of making a mistake, but we don’t have a better 
way. Uncertainity is built into Nature. But, on the long run we can be optimal.

H0 is kept H0 is rejected

H0 is true correct decision Type I. error
α

H0 is false Type II. error
β

correct decision

the Decision

We can set the tolerable level of αwith the significance level.

The Truth
(maybe at some time we 
get to know it)

„The best MD is the pathologist, knowing everything 
correctly. It is a pity that it is too late…”

Power of a test: If we have a known alternative to H0 which is the true setting, then with 
what probability will be the (wrong) H0 get rejected.



All our statements and probabilitiesare conditional!
„hypo thesis” = „the one set at the bottom”

P(A|H0,C)  : not just H0, but also the (experimental) conditions have to be considered.

C is not easy to determine!
-> we need to have inter-subjective consensus.
(everyday has to accept certain starting points and axioms to be able to have science, etc.)

But: in C we also have the subjectum, individuum included!

P(rain| C)  orP(the operation was succesful| C)

We use intuitive, in frequentist way not definable „probability” terms.

„I think today will be probably very nice weather.”
„Don’t worry, the operation must have been all right”

-> These considerations should be able to get included into our decision making!



Frequentist definition:   𝑃𝐴 = lim
𝑁→∞

𝑘𝐴

subjective probability:
PA = „Degree of belief in the happening of A”

-> the intersubjective agreement is mandatory!
It is only possible to define a reasonable P-value IF
P(A|C)will be assessed by everybody to the same level who knows C.
(P will be set to the same number by everybody being in the exactlt same situation C)

Take care, here we actuallty have
P(A|C) and kA |C 
but we usually omit the C in the formulas..

-> all collegeues  -reading the same lab report, having the same
professional knowledge and training -would set the probabilities on the 
subsets of Ω event space (e.g. the possible diagnoses!) to the same values.



No, we use a common base, the urn modell.
every probability can be expressed by an urn.

how can we compare our „probabilities”? Is then everything relative?

P(A|C) = P(Black drawn| we play with the given Urn)



The dichotomic decision is sometimes problematic. (rejecting all possibilities, or accepting all…)
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The subjective probability can be defined exactly with mathematical rigor and axioms. 
Following the laws of logic and common sense it is possible to construct an algebra for 
statements.

~ = not
. = or
v = and

do NOT memorize them! it is enough to know they exist.

(1) and 5 more form the above laws are independent, the rest can be deduced.



I. (cb)|a = F(c|ba , b|a) F(x,y) and
II. ~b|a = S(b|a) S(x)  are functions to be determined

-> if we seek to find the simplest functions fulfilling the rules then we may use
F(x,y) = F(x)*F(y)  , F(x):=x and S(x) := 1-x.

-> this leads us back formally to the Kolmogorov axioms
already known from frequentist calculus!

b|a + ~b|a = 1
and
a|a + ~a|a = 1  
sure and impossible events or statements.

do NOT memorize them!
for us it is enough that there IS an exact definition



The Bayesian probability theory is broad:
it does NOT mandant the existence of infinite repeatability 

BUT in that case if the frequentist probability exists, the Bayesian probability 
gives the same value. (due to intersubjective agreement)

There is no formal change in the calculus!

now we can calculate with the possibility of statements!

1) For every p statement it must be true that, 0 ≤ P(p) ≤ 1
if p is surely true then P(p) = 1
if p is surely impossible then P(p)=0

2) if p and q are mutually exclusive statements then P(p or q) = P(p) + P(q)

P(not-p) = 1 – P(p)



It is also possible to standardize the degree of belief
Everything is gamble

A gamble in fair way has the price equal to it’s expected benefit.

A frequentist connection (and inter-personal agreement)
in a fair game on the long run both parties are in balance

we package out degree of belief into a behavioral game:
what rational gamble are we willing to take?
(rational: the balance is 0, we just play for the fun of the game)

-> it is similar to the urn model, but makes inter-personal comparison easier:
e.g. 1:100000 is the probability of a severe side effect of the drug.

1:x-means P=1/(1+x) is the probability of the gambled event/statement.



Ω

A

B

C

P(Ω)=1 
P(A)+P(B)+P(C) <=1

our estimated probabilities must be coherent:

see the „Dutch book argument” -> only coherent probability estimations can yield a fair game. With incoherent probabilities 
somewhere will be sure gain and at other a sure loss.



Why do we need this?

There is now a way to assign probability to Hypotesis.

now we can assign probabilities to possible diagnoses!
and we can select, and arrange the diagnoses based on the probability 
distribution defined on the space of possible diagnoses.

we can even tell how many bits of information is gained by a certain diagnosis.
-> see information theory lecture



Conditional probability

P(A | B) = the probability of A given that condition B has occurred / is true.

e.g. : the patient has fever, given that she/he is COVID-19 infected.
I get the grade 5 in statistics given that I have attended every lecture. 

We are interested only in a subset of Ω, and we need 
the relative frequency in that subset only.

P(blue | stripes) = the number of blues among the ones 
with stripes = 1 blue AND stripes  /  2 stripes = ½ 

remarks:
1. For independent A and B we have P(A|B=P(A)
2. For any two events P(AB) = P(A|B)*P(B) Bayes-theorem, or product law



Bayes theorem

𝑷 𝑨 𝑯 =
𝑷(𝑨 ∙ 𝑯)

𝑷(𝑯)
conditional probability

we have two “events” A,H
H can now be a hypothesis!

P(AH) = P(blue AND stripes)
P(H)   = P(stripes)

P(A|H) = P(blue, if we know it is with stripes)

now rearrange: P(H) = P(AH)/P(A|H)   
-> probability of H can be calculated if we know the joint and the conditional probabilities.



Bayes theorem

𝑃 𝐴 𝐻 =
𝑃(𝐴 ∙ 𝐻)

𝑃(𝐻)
the conditional probability

P A ∙ 𝐻 = 𝑃 𝐴 𝐻 ∗ 𝑃 𝐻 = 𝑃 𝐻 𝐴 ∗ 𝑃(𝐴)

if P(A) and P(H) exists, then the joint probability can be calculated in two ways:

we can rearrange: 𝑃 𝐻 𝐴 =
𝑃 𝐴 𝐻 ∗ 𝑃(𝐻)

𝑃(𝐴)

thus we have “flipped” the conditional probability (now A is the condition)

This enables us to calculate the probability of H after we observed the event A happening!

Take care: for P(A) we need to know EVERY way in which it can happen!

posterior probability



example:

Let the probability of our patient having gastric ulcer be P(U)=15%, thus this is our 
degree of belief now. (could be just the prevalence if there is no better idea)

𝑃 𝑈 𝐴 =
𝑃 𝐴 𝑈 ∗ 𝑃(𝑈)

𝑃(𝐴)

We demand a PCR test for helicobacter pylori, which is in 92% positive in gastric ulcer. We 
get a positive result.

𝑃 𝑈 𝐴 =
0.92 ∗ 0.15

0.15 ∗ 0.92 + 1 − 0.15 ∗ 0.1072
= 0.602 = 60.2%

We know the sensitivity=0.95, specificity=0.91 for this test, while the populational 
prevalence of h.pylori infection is 2%. + -

h.pylori 
infected

1.90% 0.10% 2%

not 
infected 8.82% 89.18% 98%

10.72% is the probability of a + test
result independently of any other condition

P(A), i.e. the + result can happen in two ways (mutually exclusive)

- U is true
- U is false

thus: P(A) = P(U)∗P(A|U) + P(ഥ𝑈)∗P(A|ഥ𝑈)

thus AFTER the positive test the degree of belief regarding gastric ulcer is greatly increased

-> this is similar to the PPV, NPV calculations.
-> prevalence has a great influence

if the patient does not have gastric ulcer, we can 
use the general data of the PCR test

(you do NOT have to be able to repeat it!)

P(A)=P(AU)+P(AU)

posterior probability



If we only have two mutual exclusive events then the calculation is simple. This is used
extensively in epidemiology, as P(A), here the existence of the Disease, can happen only
through two ways:
Diseased/Helathy and Test+/-

𝐿𝑅+ =
𝑃(+|𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑)

𝑃(+|𝐻𝑒𝑎𝑙𝑡ℎ𝑦)
𝑂𝑑𝑖𝑠𝑒𝑎𝑠𝑒 =

𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑)

𝑃(𝑛𝑜𝑡 − 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑)
=

𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑)

𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦)

𝑂𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 |+ =
𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑|+)

𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦|+)
=

𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑 +
𝑃(+)

𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝑎𝑛𝑑+)
𝑃(+)

=
𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑+)

𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝑎𝑛𝑑+)
=

𝑃 + 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 ∗ 𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑)

𝑃 + 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 ∗ 𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦)
= 𝐿𝑅+ ∗ 𝑂𝑑𝑖𝑠𝑒𝑎𝑠𝑒

𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 + ∗ 𝑃(+) = 𝑃 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑎𝑛𝑑 + = 𝑃 + 𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 ∗ 𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑)

Same way for the calculation for LR-



we have a lot of conditional probabilities, where one can be a hypothesis as well.

prevalence = D/ALL incidence = NEW cases over t time / number at risk

se +|D incidence RATE = incidence / t time

sp -|H RR_D (D|R+)/(D|R-) PPV/(1-NPV)

false neg rate

1-se -|D RR_H (H|R+)/(H|R-) (1-PPV)/NPV

false pos rate

1-sp +|H LR+ +|D / +|H se/(1-sp)

PPV D|+ LR- -|D / -|H (1-se)/sp

NPV H|- OR_D (O_D|R+) / (O_D|R-) RR_D / RR_H

false alarm rate

1-PPV H|+ OR_H O_H|R+ / O_H|R- RR_H / RR_D

false reassurance 

rate

1-NPV D|- O_D = D/H O_D_post = O*LR

D: diseased R+ risk factor present O = p/1-p

H: healthy R-  risk factor NOT present p = O/1+O

+/- Test result
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A

B

C

X1

Output result 
possibilities of 
the diagnostic 
method(s)

Xi

P(B)

X2

„states of the world”
possible versions of H
(like diagnoses)

H=?

With the Bayes theorem we can do reverse inference

𝑃 𝐴 𝑋 = 𝑋𝑖 =
𝑃 𝐴 ∗ 𝑃(𝑋𝑖|𝐴)

σ𝑘=𝐴,𝐵,𝐶 𝑃 𝑘 ∗ 𝑃(𝑋𝑖|𝑘)



it is also possible to use a continuous H-space

𝒇 𝒉 𝒙 =
𝒇 𝒉 ∗ 𝑃(𝑥|ℎ)

ℎ׬ 𝒇 𝒉 𝑃 𝑥 ℎ 𝑑ℎ𝑷 𝑨 𝑿 = 𝑿𝒊 =
𝑷 𝑨 ∗ 𝑃(𝑋𝑖|𝐴)

σ𝑘=𝐴,𝐵,𝐶𝑷 𝒌 ∗ 𝑃(𝑋𝑖|𝑘)

We can update the prior distribution using the output of experiments, diagnostics to get the 
posterior distribution.
we must know the “forward” conditional probabilities (Likelihood).

Remark: there are two important conditions:
- The prior is existent (with the Bayesian definition it is 

likely to be OK)
- we can calculate or at least estimate the Likelihoods, and 

cover the full Ω.



Medical applications

Decision supporting systems
Categorization
Research
Artificial Intelligence
(neural networks)



Decision supporting systems – decision theory

The Bayesian method helps to get insight by updating the prior after new experimental 
results arrive.

how to decide?

benefit



Decision -> Benefit?

We make the decision which maximizes the expected benefit.

for possibilities we have preferences for which we take two axioms as base:
completeness: 
transitivity:

1 ≼ 2 𝑜𝑟 2 ≼ 1 here the ≼ is a relation in which we 
a re willing to “pay” to get the 
greater benefit.

We may not know every possibility, but they can be racionally extended if new possibilities 
(therapies) become available.

1 ≼ 2 𝑎𝑛𝑑 2 ≼ 3 ⟹ 1 ≼ 3

the preferences can be mathematically expressed by a utility function (G) which 
renders numbers to possibilities (it can simply be the expected benefit, but can be more complex.)

-> more in the advanced course

vNM (von Neumann-Morgernstern) expected utility theory: G can be the “price” of a “lottery”



prior posterior

observations, results

Bayes
theorem

G (H)

max{G(Hi)}

decision

Bayesian decision making graph

-> more in the advanced course


