Light absorption

- 2.70. As a result of the absorption of a light quantum the electron of a hydrogen atom is excited from the L-shell to the N-shell. The energy difference between these shells is 2.55 eV. Give the wavelength of the absorbed light. What kind of light is that?
- 2.77. What is the transmittance of a solution, if reflectance and scattering are negligible, and its the absorbance is
 - a) 0;
 - b) 0.01;
 - c) 0.1;
 - d) 0.8;
 - e) 1;
 - f) 2;
 - g) ∞ ?
- 2.78. What is the absorbance of a solution, if reflectance and scattering are negligible, and its transmittance is
 - a) 0;
 - b) 0.1%;
 - c) 0.1;
 - d) 1%;
 - e) 10%;
 - f) 0.8;
 - g) 0.5;
 - h) 1;
 - i) 100%?
- 2.79. The linear attenuation coefficient of water for the light with 540 nm wavelength is $0.08~\text{m}^{-1}$. A light with that wavelength and 300 W/m² intensity enters water. Calculate
 - a) the half-value layer (or half-value thickness),
 - b) the mean penetration depth,
 - c) the light intensity at 100 m depth,
 - d) the transmittance of 100 m water layer, and
 - e) the absorbance of 100 m water layer.
- 2.80. The linear attenuation coefficient of healthy tooth enamel is $3.1~\rm cm^{-1}$ for the infrared light with 1310 nm wavelength. A light with that wavelength and 300 W/m² intensity is used to illuminate an enamel layer of 2 mm thickness. Reflectance can be neglected. Calculate
 - a) the transmitted intensity,
 - b) the transmittance,
 - c) the absorbance,
 - d) the half-value layer, and
 - e) the mean penetration depth for this wavelength.
- 2.81. The decadic extinction of Earth's atmospheric ozone layer (which includes both the absorption and the scattering components) for ultraviolet radiation with 300 nm wavelength is 2.5.
 - a) What percentage of the incident ultraviolet light can pass through the ozone layer?
 - b) By how many fold does the transmitted radiation intensity increase if the thickness of the ozone layer decreases by 20%? For the sake of simplicity consider the ozone layer a homogeneous layer with uniform ozone concentration.

- 2.82. The linear attenuation coefficient of water strongly depends on the wavelength; e.g. for the violet light with 400 nm wavelength it is $0.02~\text{m}^{-1}$ while for the red light with 700 nm wavelength it is $0.8~\text{m}^{-1}$. Let us suppose that the intensity of the two components in the incident ray is equal.
 - a) What will be the ratio of the violet and red intensities at 4 m depth?
 - b) At what depth will the ratio of the violet and red intensities be 100:1?
- 2.149. A solution of 1 cm layer thickness and 0.3% (m/V) concentration absorbs 20% of the incident intensity of the light passing through it. What percentage of the initial intensity of the same light beam passes through
 - a) 2 cm
 - b) 3 cm
 - c) 10 cm
 - d) 0.5 cm solution layer supposing the same composition and concentration?
 - e) What layer thickness of the same solution absorbs 90% of the incident intensity?
 - f) What is the half-value layer,
 - g) the mean penetration depth,
 - h) the linear attenuation coefficient of the solution?
 - i) What is the specific absorption coefficient of the solute for this kind of light?
 - j) What is the molar absorption coefficient of the solute for this kind of light if its molar mass is 300 g/mol?
- 2.150. A solution of 1 cm layer thickness and 0.3% (m/V) concentration absorbs 20% of the incident intensity of the light passing through it. What percentage of the initial intensity of the same light beam passes through
 - a) the 0.6% (m/V),
 - b) the 0.9% (m/V),
 - c) the 0.15% (m/V) solution of the same solute if the layer remains 1 cm?
- 2.151. A sheet of glass transmits 90% of the incident light. How many % is tranmitted by
 - a) two,
 - b) three, and
 - c) ten such sheets?
- 2.152. The molar extinction coefficient of the aqueous solution of NADH (nicotinamide adenine dinucleotide, molar mass = 663.43 g/mol) for the 340 nm wavelength light is $6220 \text{ M}^{-1} \cdot \text{cm}^{-1}$.
 - a) What is the molar concentration of the NADH solution that has an absorbance of 0.12 measured in a cuvette of 9.98 mm thickness?
 - b) What would be the absorbance of the solution (measured in the same cuvette) that is prepared by dissolving 0.2 mg NADH in 10 mL water?
- 2.153. We dissolved 0.4733 mg of ATP (adenosine triphosphate, molar mass = 507.18 g/mol) in 12 mL water. The absorbance of the resulting solution was 1.2 when measured in a 10.02 mm cuvette at 259 nm.
 - a) What is the molar and
 - b) specific absorption (extinction) coefficient of ATP?
 - c) How many μM is the concentration of the ATP solution (measured in the same cuvette and at the same wavelength) if its OD is 0.07?
 - d) How many mg ATP should be dissolved in 10 mL water to produce a solution with an optical density of 0.25 (measured in the same cuvette and at the same wavelength)?
 - e) The absorption maximum of ATP (in aqueous solution at neutral pH) is at 259 nm. How many eV energy difference belongs to the corresponding electronic transition?

Solutions

- 2.70. **488 nm, blue light**
- 2.77. a) **100%**
 - b) 97.72%
 - c) 79.43%
 - d) 15.85%
 - e) 10%
 - f) 1%
 - g) 0%
- 2.78. a) ∞
 - ... uj
 - b) **3**
 - c) 1
 - d) **2**
 - e) **1**
 - f) 0.0969
 - g) **0.301**
 - h) 0
 - i) **0**
- 2.79. a) **8.664 m**
 - b) **12.5 m**
 - c) 0.10064 W/m²
 - d) **0.03355**%
 - e) **3.474**
- 2.80. a) **161.38 W/m²**
 - b) **53.79%**
 - c) **0.269**
 - d) 0.2236 cm
 - e) 0.3226 cm
- 2.81. a) **0.316%**
 - b) to 1%, i.e. it increases by a factor 3.16
- 2.82. a) $J_{\text{violet}}/J_{\text{red}} = 22.646$
 - b) 5.904 m
- 2.149. a) 64%
 - b) **51.2%**
 - c) 10.74%
 - d) 89.44%
 - e) 10.319 cm
 - f) 3.106 cm
 - g) 4.481 cm
 - h) 0.223 cm⁻¹
 - i) 32.3 (cm³/g) · cm⁻¹
 - i) 9.691 M⁻¹ · cm⁻¹

- 2.150. a) **64%**
 - b) **51.2%**
 - c) **89.44%**
- 2.151. a) **81%**
 - b) **72.9%**
 - c) **34.87%**
- 2.152. a) **19.33 μM**
 - b) **0.187**
- 2.153. a) **15270 M⁻¹ · cm⁻¹**
 - b) 301.1 (cm³/g) · cm⁻¹
 - c) 4.575 µM
 - d) **0.08287 mg**
 - e) **4.8 eV**