Amplifier

1. A voltage divider consists of the resistors $R_{1}=2 \mathrm{k} \Omega$ and $R_{2}=20 \mathrm{k} \Omega$.
a) What is the output voltage taken away from the R_{1} resistor if the input voltage is 230 V ?
b) What is the voltage gain?
c) What is the power gain? (Neglect the difference between $R_{\text {in }}$ and $R_{\text {out }}$)
d) What is the power gain level in decibel units?
2. How many kiloohms should be the resistance of the R_{2} resistor of the voltage divider, if we want to take away 25% of the input voltage from the $R_{1}=1200 \Omega$ resistor?
3. The power gain level of a voltage divider is -23 dB . (Neglect the difference between $R_{\text {in }}$ and $R_{\text {out. }}$)
a) What is the power gain?
b) What is the voltage gain?
c) How many ohms should be the R_{2} resistor if the output voltage is taken away from $R_{1}=1 \mathrm{k} \Omega$?
4. For the voltage divider shown in Fig. $1 U_{\text {in }}=100 \mathrm{~V}$, $R_{1}=1700 \Omega, R_{2}=300 \Omega$. Find $U_{\text {out }}$ and A_{U}.
5. For the voltage divider shown in Fig. $1 U_{\text {out }}=100$ V, $R_{1}=1700 \Omega, R_{2}=300 \Omega$. Find $U_{\text {in }}$ and A_{U}.
6. For the voltage divider shown in Fig. $1 U_{\text {in }}=250 \mathrm{~V}$, $R_{1}=800 \Omega, U_{\text {out }}=75 \Omega$. Find R_{2}.
7. For the voltage divider shown in Fig. $1 U_{\text {in }}=250 \mathrm{~V}$, $R_{2}=800 \Omega, U_{\text {out }}=75 \mathrm{~V}$. Find R_{1}.

Fig. $1{ }^{1 \pi}$
8. For the voltage divider shown in Fig. $1 A_{\mathrm{U}}=0.05$ and $R_{2}=2 \mathrm{k} \Omega$. Find R_{1}.
9. For the voltage divider shown in Fig. $1 A_{\mathrm{U}}=0.08$ and $R_{1}=4 \mathrm{k} \Omega$. Find R_{2}.
10. The input voltage of the potentiometer shown in Fig. 2 is 200 V. To what $\%$ should the wiper be adjusted so that the output voltage becomes
a) 40 V
b) 100 V
c) 0 V
d) 200 V ?
11. The input voltage of the potentiometer shown in Fig. 2 is 10 V . What is the output voltage if the wiper stands at 20% ?
12. An amplifier amplifies the amplitude of the input signal voltage by one thousand fold. Find the power gain level. (Suppose $R_{\text {in }}=R_{\text {out. }}$)
13. An amplifier amplifies the signal power by a factor of one thousand. Find
a) the voltage gain (suppose $R_{\text {in }}=R_{\text {out }}$) and
b) the power gain level.

Fig. 2π
14. By how many times does an amplifier of 43 dB amplify the signal power? ($R_{\text {in }}=R_{\text {out }}$)
15. The halving of the signal voltage corresponds to how many decibels change? ($R_{\mathrm{in}}=R_{\text {out }}$)
16. We double the voltage of a signal with an amplifier. What is the change in signal power expressed on the decibel scale? ($R_{\text {in }}=R_{\text {out }}$)
17. How many decibels is the power gain level if the output power belonging to the 2 W input power is
a) 2000 W
b) 100 W
c) 4 W
d) 2 W
e) 1 W
f) 0.2 W
g) 0 W ?
18. To what power does an amplifier amplify the 5 W input signal power if the power gain level for this signal is
a) 50 dB
b) 3.7 B
c) 10 dB
d) 1 dB
e) 0 dB
f) $-1 d B$
g) $-\infty \mathrm{dB}$?
19. Two harmonic (i.e. sinusoidal) signals of equal power but different frequencies (f_{1} and f_{2}) are amplified with an amplifier the power gain level of which is 30 dB at the f_{1} and 27 dB at the f_{2} frequency. What is the power ratio of the amplified signals?
20. Two harmonic signals of equal power but different frequencies (f_{1} and f_{2}) are amplified with an amplifier the power gain level of which is 50 dB at the f_{1} and 33 dB at the f_{2} frequency. What is the power ratio of the amplified signals?
21. The power gain level of an amplifier without feedback is 50 dB . What will be the power gain level if 1% of the output signal voltage is fed back in opposite phase? The difference between $R_{\text {in }}$ and $R_{\text {out }}$ can be neglected.
22. The power gain level of an amplifier is 13 dB . It decreases to 10 dB as a result of negative feedback. What part of the output voltage is fed back? The difference between $R_{\text {in }}$ and $R_{\text {out }}$ is to be neglected.
23. The power gain level of an amplifier is 26 dB . It decreases to 20 dB as a result of negative feedback. What percentage of the output voltage is fed back? The difference between $R_{\text {in }}$ and $R_{\text {out }}$ is negligible.
24. The voltage gain of an amplifier is 100 without feedback. 3% of the output voltage is fed back in opposite phase with a feedback loop. $R_{\text {in }}$ and $R_{\text {out }}$ can be considered equal.
a) What is the power gain level without feedback?
b) To what value does the voltage gain change as a result of the feedback?
c) What will be the power gain level as a result of the feedback?

Formulae

$R=\frac{U}{I}$ (Ohm's law)
$P=U \cdot I=\frac{U^{2}}{R}=I^{2} \cdot R \quad$ (electric power)
$\frac{U_{1}}{U_{T}}=\frac{R_{1}}{R_{1}+R_{2}}$ (voltage divider)
$A_{U}=\frac{U_{k i}}{U_{b e}}$ (definition of voltage gain)
$A_{P}=\frac{P_{k i}}{P_{b e}}=\frac{\left(\frac{U_{k i}^{2}}{R_{k i}}\right)}{\left(\frac{U_{b e}^{2}}{R_{b e}}\right)}=\frac{U_{k i}^{2}}{R_{k i}} \cdot \frac{R_{b e}}{U_{b e}^{2}}=\frac{U_{k i}^{2}}{U_{b e}^{2}} \frac{R_{b e}}{R_{k i}}=\left(\frac{U_{k i}}{U_{b e}}\right)^{2} \cdot \frac{R_{b e}}{R_{k i}}=\underbrace{A_{U}^{2} \cdot \frac{R_{b e}}{R_{k i}} \approx A_{U}^{2}}_{R_{b e} \approx R_{k i}}$ (definition of power gain)
$n_{d B}=10 n_{B}=\underbrace{10 \log A_{P} \approx 20 \log A_{U}}_{R_{m i} \approx R_{\text {out }}}$
(definition of power gain level)
$A_{U, N F B}=\frac{A_{U}}{1+A_{U} \cdot \beta}$ (voltage gain with negative feedback)

Solutions

1. a) $U_{1}=U_{\text {source }} \cdot \frac{R_{1}}{R_{1}+R_{2}}=230 \mathrm{~V} \cdot \frac{2 k \Omega}{2 k \Omega+20 \mathrm{k} \Omega}=20.9 \mathrm{~V}$
b) $A_{U}=\frac{U_{\text {out }}}{U_{\text {in }}}=\frac{20.9 \mathrm{~V}}{230 \mathrm{~V}}=0.0909=9.09 \%$
c) $A_{P} \approx A_{U}^{2}=0,0909^{2}=0,00826=0,826 \%$
d) $n_{d B}=10 \log A_{P}=10 \log 0,00826=-20,83 d B=-2,083 B$
2. $\frac{U_{1}}{U_{T}}=\frac{R_{1}}{R_{1}+R_{2}} \Rightarrow R_{2}=R_{1} \cdot \frac{U_{T}}{U_{1}}-R_{1}=1200 \Omega \cdot \frac{1}{0,25}-1200 \Omega=3600 \Omega$
3. a) $n_{d B}=10 \log A_{P} \Rightarrow A_{P}=10^{\frac{n_{d B}}{10}}=10^{\frac{-23}{10}}=0,005=0,5 \%$
b) $A_{P} \approx A_{U}^{2} \Rightarrow A_{U} \approx \sqrt{A_{P}}=\sqrt{0,005}=0,0707=7,07 \%$
c) $A_{U}=\frac{U_{1}}{U_{T}}=\frac{R_{1}}{R_{1}+R_{2}} \Rightarrow R_{2}=\frac{R_{1}}{A_{U}}-R_{1}=\frac{1 \mathrm{k} \Omega}{0,0707}-1 \mathrm{k} \Omega=13,142 \mathrm{k} \Omega=13142 \Omega$
4. $\quad U_{\text {out }}=85 \mathrm{~V} ; A_{\mathrm{U}}=0.85$
5. $\quad U_{\text {in }}=117.65 \mathrm{~V} ; A_{\mathrm{U}}=0.85$
6. $R_{2}=1867 \Omega$
7. $R_{1}=343 \Omega$
8. $R_{1}=105.3 \Omega$
9. $R_{2}=46 \mathrm{k} \Omega$
10. a) 20%
b) 50%
c) 100%
d) 0%
11. $U_{\text {out }}=2 \mathrm{~V}$
12. $n_{d B} \approx 20 \log A_{U}=20 \log \frac{U_{\text {out }}}{U_{\text {in }}}=20 \log 1000=60 d B$
13. a) $A_{U} \approx \sqrt{A_{P}}=\sqrt{1000}=31.62$
b) $n_{d B}=10 \log A_{P}=10 \log 1000=30 d B$
14. $n_{d B}=10 \log A_{P} \Rightarrow A_{P}=10^{\frac{n_{d B}}{10}}=10^{\frac{43}{10}} \approx 20000$
15. $n_{d B} \approx 20 \log A_{U}=20 \log 0.5=-6.02 d B$
16. $n_{d B} \approx 20 \log A_{U}=20 \log 2=6.02 d B$
17. $n_{d B}=10 \log A_{P}=10 \log \frac{P_{\text {out }}}{P_{\text {in }}}$
a) 30 dB
b) 17 dB
c) 3 dB
d) 0 dB
e) -3 dB
f) -10 dB
g) $-\infty \mathrm{dB}$
18. $n_{d B}=10 \log A_{P}=10 \log \frac{P_{\text {out }}}{P_{\text {in }}} \Rightarrow P_{\text {out }}=P_{\text {in }} \cdot 10^{\frac{n_{\text {d }}}{10}}$
a) 500 kW
b) 25 kW
c) 50 W
d) 6.3 W
e) 5 W
f) 3.97 W
g) 0 W
19. $n_{d B}=10 \log A_{P}=10 \log \frac{P_{k i}}{P_{b e}} \Rightarrow P_{k i}=P_{b e} \cdot 10^{\frac{n_{d B}}{10}}$
$P_{k i, 1}=P_{b e} \cdot 10^{\frac{30}{10}}=P_{b e} \cdot 1000$
$P_{k i, 2}=P_{b e} \cdot 10^{\frac{27}{10}}=P_{b e} \cdot 501$
$\frac{P_{k i, 1}}{P_{k i, 2}}=\frac{P_{b e} \cdot 1000}{P_{b e} \cdot 501} \approx 2$
20. $\frac{P_{k i, 1}}{P_{k i, 2}}=\frac{P_{b e} \cdot 10^{\frac{50}{10}}}{P_{b e} \cdot 10^{\frac{33}{10}}}=10^{5-3,3} \approx 50$
21. $n_{d B} \approx 20 \log A_{U} \Rightarrow A_{U} \approx 10^{\frac{n_{d B}}{20}}=10^{\frac{50}{20}}=316,23$
$A_{U, N V C S}=\frac{A_{U}}{1+A_{U} \cdot \beta}=\frac{316,23}{1+316,23 \cdot 0,01}=75,98$
$n_{d B} \approx 20 \log A_{U}=20 \log 75,98=37,61 d B$
22. $n_{d B} \approx 20 \log A_{U} \Rightarrow A_{U} \approx 10^{\frac{n_{d B}}{20}}$
$A_{U}=10^{\frac{13}{20}}=4,4668$
$A_{U, N V C S}=10^{\frac{10}{20}}=3,1623$
$A_{U, N V C S}=\frac{A_{U}}{1+A_{U} \cdot \beta} \Rightarrow \beta=\frac{1}{A_{U, N V C S}}-\frac{1}{A_{U}}=\frac{1}{3,1623}-\frac{1}{4,4668}=0,0924$
23. $A_{U, N V C S}=\frac{A_{U}}{1+A_{U} \cdot \beta} \Rightarrow \beta=\frac{1}{A_{U, N V C S}}-\frac{1}{A_{U}}=\frac{1}{10^{\frac{20}{20}}}-\frac{1}{10^{\frac{26}{20}}}=0,05$
24. a) $n_{d B} \approx 20 \log A_{U}=20 \log 100=40 d B$
b) $A_{U, N V C S}=\frac{A_{U}}{1+A_{U} \cdot \beta}=\frac{100}{1+100 \cdot 0,03}=25$
c) $n_{d B} \approx 20 \log A_{U}=20 \log 25=28 d B$
