Lab Report: Measurement Techniques

Biophysics Lab – 2014/2015 first semester

Date of lab:	Evaluation by lab teacher: $\Box \Box \Box \Box \Box$ to be corrected*		
Measured together with:			
	□ accepted	signature	

Aim of measurement:

Undestanding how analog and digital measuring instruments and oscilloscope works.

1. Basic electric measurements: measuring voltage, current, and resistance.

- 2. Measuring illuminance with a luxmeter.
- 3. Determining voltage, time, and resistance with digital oscilloscope.
- 4. Measuring the conductivity of solutions.

Measuring instrument and materials:

1st measurement: (manufacturer) (model) digital multimeter. Other objects included: a lantern battery, two resistors with known resistance ($R_1 = \dots$ Ω and $R_2 = \dots, \Omega$, and another two with unknown resistance (R_{xl}, R_{x2}). 3rd measurement: (manufacturer) (model) digital oscilloscope. the matching measuring electrode. Other material included: deionized water, tapwater, and 500 mmol/L aqueous solution of NaCl.

Measurement results:

1. a. Determining the terminal voltage of the lantern battery

Measurement setup:

Measurement	results:

		measured		
measured or calculated quantity	symbol	20 V	200 V	unit
		measuri	ng range	
the measured voltage of the lantern battery	U _{meas.}			
least place-value	, digit			
uncertainty of measurement, H_{max}	H _{max}			
measured value with the uncertainty indicated	U _{meas} ±H _{max}	±	±	

Measurement uncertainty: measured value \cdot 0,5% + 1 *digit.*

The parts to be corrected should be repeated on a new sheet that is attached to this one upon resubmission.

1. d. Series and parallel connection of resistors

Measurement setups: One by one

Connected in parallel

Measurement results:

measured or calculated quantity	symbol	measured value	unit	calculated value	unit
resistance of R_1	R_1		•••		
resistance of R_2	R_2				
overall resistance of resistors in series	<i>R</i> _{series}				
overall resistance of resistors in parallel	R _{parallel}				•••••

1. d. Measurement on a voltage divider

Measurement setup:

sample	measured conductance				
	symbol	value	measurement uncertainty	unit	
deionized water	G _{deion.}		±		
tapwater	G _{tapw.}		±		
NaCl solution (500 mmol/L)	G _{NaCl}		±		

(measurement uncertainty = measurement range $\cdot 2\%$)

4. Measurement with oscilloscope

measured quantity	symbol	method	sine wave signal		signal	
			value	unit	value	unit
		conventional				
time neriod	Т					
ume periou	1	with markers				
peak-to-peak voltage	T T	conventional				
(double amplitude)	U _{p-to-p}	with markers				
effective voltage	$U_{e\!f\!f}$	calculation				

Lab teacher's signature as proof of lab work: