3. THEMENKATALOG

(mit empfohlenen Abschnitten aus dem Lehrbuch)

Vorlesungsstoff:

Strukturuntersuchungmethoden in der medizinischen Forschung

- Spektroskopie
 - ➤ Infrarotspektroskopie (*VI/3.2)
- Mikroskopie
 - > Spezielle Lichtmikroskope: Fluoreszenzmikroskop (*VI/2.3), Konfokale Laser Rastermikroskopie (CLSM) (*X/3.1),
 - Superresolutionsmikroskope: Strukturierte Beleuchtung Mikroskopie (SIM) und Stimulierte Emission Depletion Microscopy (STED)
 - Rastersondenmikroskope: Rasterkraftmikroskop (Atomic Force Microscope, AFM) (*X/2), Das Rasterprinzip (*VIII/4.2.1) (*X/2),
 - Elektronenmikroskope: Transmissions-Elektronenmikroskop (TEM), Raster-Elektronenmikroskop (SEM) (*X/5)
- Röntgendiffraktion (*X/6)

Physikalische Grundlagen der Nuklearmedizin

- Radioaktivität und Kernstrahlungen
 - Aufbau des Atomkerns, Isotope, Radioaktivität, Tröpfchenmodell, Potenzialtopfmodell (Schalenmodell) (*1/1.5)
 - Alpha-Zerfall, Spektrum der Alpha-Strahlung, Wechselwirkungen mit der Materie (*11/3.2.1 und 11/3.2.3)
 - ▶ Beta- Zerfall, Spektrum der Beta-Strahlung, Wechselwirkungen mit der Materie (*11/3.2.1 und 11/3.2.3)
 - > Gamma-Strahlung, prompte Gamma-Strahlung, isomerer Übergang, Technetium Generator (*11/3.2.1 und 11/3.2.3)
 - > Aktivität, Zerfallsgesetz, Radioisotope im menschlichen Körper, biologische und effektive Halbwertszeit (*II/3.2.2)
- Wechselwirkungen zwischen Gamma-Strahlung und Materie
 - Schwächungsgesetz, Massenschwächungskoeffizient (*II/3.1.5)
 - ➤ Teilprozesse: Compton-Streuung, Photoeffekt, Paarbildung(*II/3.2.3)
- Strahlungsdetektoren (**II/3.2.5*)
 - Szintillationszähler (Aufbau und Funktion) (*VIII/3.2)
 - Auf Gasionisation basierende Detektoren (Ionisationskammer, Aufbau und Funktion, Spannungsbereiche) (*II/2.4.1)
 - > Halbleiterdetektoren
- Nuklearmedizin (**II/3.2.4*)
 - Radiopharmaka, Tracermethode, Technetiumgenerator (*II/3.2.4 und II/3.2.1)
 - In vitro und in vivo nuklearmedizinische Methoden, physikalische Aspekte bei der Auswahl von in vivo applizierten Isotopen (*II/3.2.4)
 - Szintigraphie, Gammakamera, Aufbau und Funktion (*VIII/3.2)
 - Szintigraphiearten; ROI, Zeit-Aktivitäts Kurve, effektive und biologische Halbwertszeit, SPECT Funktion (*VIII/3.2 und VIII/4.4.1)
 - ➤ PET, Aufbau und Funktion, positronenstrahlende Isotope und ihre Herstellung (*VIII/4.4.1 und II/3.2.6)

Praktikumsstoff:

- Dosimetrie
- Verstärker

- Polarimeter
- Gamma-Absorption

Aufgaben: Aufgabensammlung 2.94, 96, 97, 99-102, 105, 108-112, 121-126

7.39-41, 44 8.7-11 10.1, 2, 3, 9, 10 11.6-10, 21, 23

*Zu dem Thema empfohlene Abschnitte des Lehrbuches "Biophysik für Mediziner" (Hrsg.: Damjanovich, Fidy, Szöllősi)