2. THEMENKATALOG

(Der zweite Themenkatalog mit empfohlenen Abschnitten aus dem Lehrbuch)

Vorlesungsstoff:

Licht in der Medizin

- Biologische Wirkungen des Lichtes
 - Allgemeine Beschreibung: Eindringtiefe und Wirkung, Photochemische Reaktionen, Physikalische Größen
 - ➤ Phototherapie, Photochemotherapie: Psoralen-UVA (PUVA), Photodynamische Therapie (PDT), Blaulichttherapie, Zahnmedizinische Anwendungen

Strukturuntersuchungmethoden in der medizinischen Forschung

- Mikroskopie
 - > Spezielle Lichtmikroskope: Fluoreszenzmikroskop (*VI/2.3), Konfokale Laser Rastermikroskopie (CLSM) (*X/3.1),
 - Superresolutionsmikroskope: Strukturierte Beleuchtung Mikroskopie (SIM), Stimulierte Emission Depletion Mikroskopie (STED)
 - Rastersondenmikroskope: Rasterkraftmikroskop (AFM) (*X/2), Das Rasterprinzip (*VIII/4.2.1) (*X/2),
 - Elektronenmikroskope: Transmissions-Elektronenmikroskop (TEM), Raster-Elektronenmikroskop (SEM) (*X/5)

Physikalische Grundlagen der Röntgendiagnostik

- Erzeugung und Eigenschaften der Röntgenstrahlen
 - Allgemeine Charakterisierung, Herstellung der Röntgenstrahlung, Aufbau und Funktion der Röntgenröhre (*II/3.1.1)
 - ▶ Bremsstrahlung, Spektrum, Duane-Hunt-Gesetz, Leistung, Wirkungsgrad der Röntgenröhre (*II/3.1.2-3)
 - Charakteristische Röntgenstrahlung, Entstehung und Spektrum (*II/3.1.4); Röntgendiffraktionsmethode (Ergänzung zum Lehrstoff des 1. Semesters)
- Physikalische Grundlagen der Röntgendiagnostik
 - ➤ Wechselwirkungen zwischen Röntgenstrahlung und Materie: Schwächungsgesetz, Compton-Streuung, Photoeffekt, Paarbildung (*II/3.1.5-6)
 - ➤ Röntgenbildentstehung: Summationsbild, Rolle der Compton-Streuung und des Photoeffektes, Anwendung von Kontrastmitteln (*VIII/3.1.1 und II/3.1.6)
 - Minimalisierung der Dosis (Filter, Kollimator, Abstand), Vergrößerung des Schattenbildes, Erhöhung der Bildqualität (Photonenenergie, Abstand, Fokus, Streustrahlungsraster)
 - > Spezielle Verfahren: konventionelle Fluoroskopie, direkte digitale Technik, DSA (*VIII/3.1.2-4)
 - Computertomographie: Grundprinzip, Röntgendichte, Messung, Bildrekonstruktion, Hounsfield-Skala (CT-Wert), Fensterung, CT-Generationen 1 bis 4, Spiral-CT, Multislice-CT (*VIII/4.3)

Physikalische Grundlagen der Nuklearmedizin

Radioaktivität und Kernstrahlungen

- Aufbau des Atomkerns, Isotope, Radioaktivität, Tröpfchenmodell, Potenzialtopfmodell (Schalenmodell) (*1/1.5)
- Alpha-Zerfall, Spektrum der Alpha-Strahlung, Wechselwirkungen mit der Materie (*11/3.2.1 und 11/3.2.3)
- ▶ Beta- Zerfall, Spektrum der Beta-Strahlung, Wechselwirkungen mit der Materie (*II/3.2.1 und II/3.2.3)
- > Gamma-Strahlung, prompte Gamma-Strahlung, isomerer Übergang, Technetium Generator (*11/3.2.1 und 11/3.2.3)
- Aktivität, Zerfallsgesetz, Radioisotope im menschlichen Körper, biologische und effektive Halbwertszeit (*11/3.2.2)
- Wechselwirkungen zwischen Gamma-Strahlung und Materie
 - Schwächungsgesetz, Massenschwächungskoeffizient (*II/3.1.5)
 - Teilprozesse: Compton-Streuung, Photoeffekt, Paarbildung(*11/3.2.3)
- Strahlungsdetektoren (**II/3.2.5*)
 - Szintillationszähler (Aufbau und Funktion) (*VIII/3.2)
 - Auf Gasionisation basierende Detektoren (Ionisationskammer, Aufbau und Funktion, Spannungsbereiche) (*II/2.4.1)
 - ➤ Halbleiterdetektoren
- Nuklearmedizin (**II/3.2.4*)
 - Radiopharmaka, Tracermethode, Technetiumgenerator (*II/3.2.4 und II/3.2.1)
 - In vitro und in vivo nuklearmedizinische Methoden, physikalische Aspekte bei der Auswahl von in vivo applizierten Isotopen (*II/3.2.4)
 - Szintigraphie, Gammakamera, Aufbau und Funktion (*VIII/3.2)
 - > Szintigraphiearten; ROI, Zeit-Aktivitäts Kurve, effektive und biologische Halbwertszeit, SPECT Funktion (*VIII/3.2 und VIII/4.4.1)
 - ▶ PET, Aufbau und Funktion, positronenstrahlende Isotope und ihre Herstellung(*VIII/4.4.1 und II/3.2.6)

Praktikumsstoff:

- Dosimetrie
- Verstärker
- Polarimeter
- Gamma-Absorption

Semmelweis Universität Fakultät für Humanmedizin Lehrfach "Medizinische Biophysik" Studienjahr 2019/20 1. Semester Semmelweis Universität Fakultät für Zahnmedizin Lehrfach "Biophysik" Studienjahr 2019/20 1. Semester

Aufgaben: Aufgabensammlung

2.75b-78 und 81 9.3-6 2.86-88, 90-92 7.13, 8.1-4; 2.94, 96, 97, 99-102, 105, 108

Gamma-Absorption: 2.112 und 11.9, 10

Dosimetrie: 2.121-126

Verstärker: 7.39-41, 44 und 11.21 und 23

*Zu dem Thema empfohlene Abschnitte des Lehrbuches "Biophysik für Mediziner" (Herausgeber:Damjanovich, Fidy, Szöllősi)