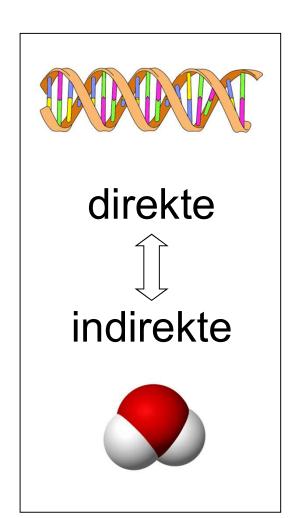

Dosimetrie der ionisierenden Strahlungen


Dr. László Smeller

Biologische Wirkung der ionisierenden Strahlungen

Mechanismus der Wirkungen der Strahlungen

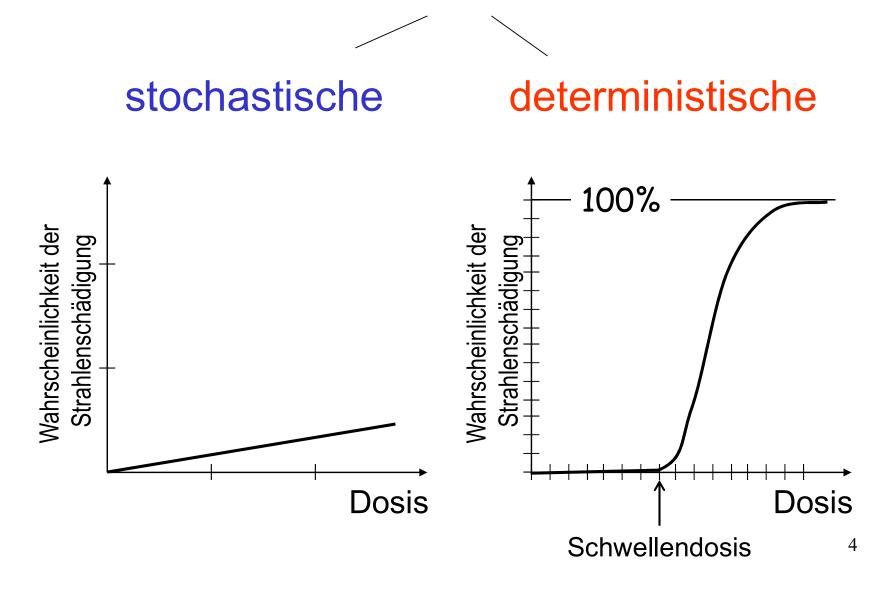
Physikalische Phase

10⁻¹⁷-10⁻¹² s Ionisation

Chemische (biochemische) Phase:

10⁻¹⁰ -1s Reaktion der freien

Radikale.


Biologische Phase:

Stunden: Gewebeschädigungen

Tage-Jahre: Somatische

Schädigungen, Tumor

Klassifizierung der Strahlenwirkungen

Klassifizierung der Strahlenwirkungen

stochastische

- Beim niedrigen Dosisniveau
- Zufällig vorkommende
- Keine Schwellendosis
- Schwäregrad der Schädigung ist dosisunabhängig.

Personal in den Röntgen und Isotoplaboratorien

Patienten der Rtg oder Isotopenuntersuchungen

deterministische

- Beim hohen Dosisniveau
- Kommt über einer Schwellendosis vor
- Schwäregrad der Schädigung nimmt mit der Dosis zu

Dosisbegriffe

1. Energiedosis

Definition von Energiedosis:

$$D = \frac{\Delta E}{\Delta m}$$
Die in Δm Masse absorbierte Strahlungsenergie

In 1 kg Masse absorbierte Energie

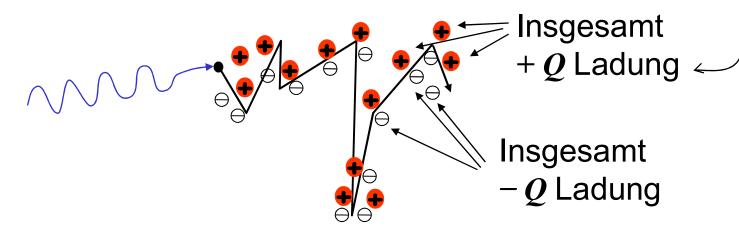
Einheit J/kg = Gy (gray)

Messung:

- Die direkte Messung ist fast unmöglich minimale Temperaturerhöhung: △T < 0,01 °C / 6 Gy)
- indirekte Methode
 - **≻**Ionisationskammer
 - > Halbleiterdetektor
 - ➤ Thermolumineszenz Dosimeter

Louis Harold Gray

Dosisbegriffe

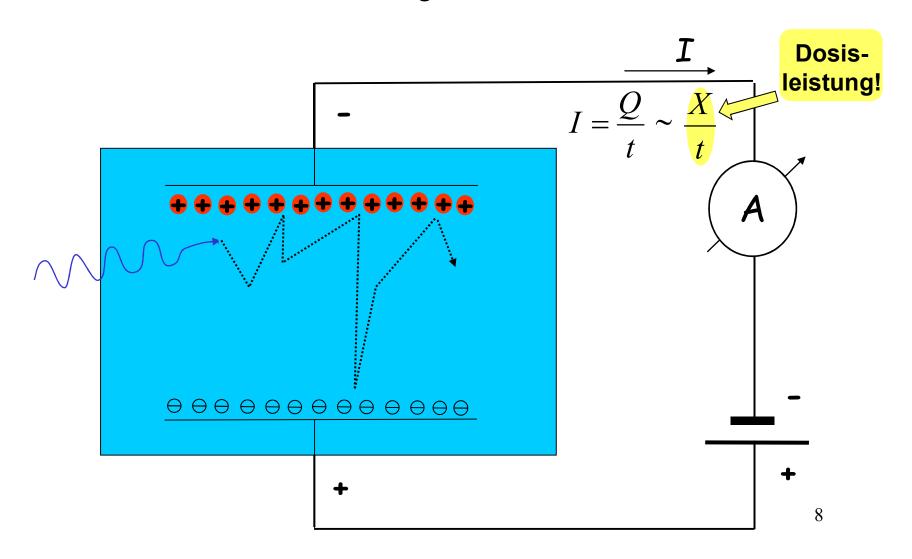

2. Ionendosis

Definition der lonendosis:

$$X = \frac{\Delta Q}{\Delta m}$$

Die in Δm Masse entstandene positive Ladung

Maßeinheit: C/kg



Nur für γ und Röntgenstrahlung E_{Photon} < 3MeV in Luft

Ionendosis

$$X = \frac{\Delta Q}{\Delta m}$$

Kann mit Ionisationskammer gemessen werden

Umrechnung der im Luft gemessenen Ionendosis zur Energiedosis in Gewebe

Ionendosis
$$\xrightarrow{1.}$$
 Energiedosis in Luft $\xrightarrow{2.}$ Energiedosis in Gewebe

1. Berechnung der Energiedosis aus der Ionendosis:

Man braucht 34 eV um einen Ionenpaar in Luft herzustellen

34 eV= 34 · 1,6 · 10⁻¹⁹ J
$$\longrightarrow$$
 1,6 · 10⁻¹⁹ C
34 J \longrightarrow 1 C
$$1\frac{C}{kg} \Rightarrow 34\frac{J}{kg} = 34 Gy_{Luft}$$

$$f_0$$

2. Energiedosis in Luft -> Energiedosis in Gewebe

Massenschwächungskoeffizient ist bestimmend: $D \sim \mu_{
m m}$

$$rac{D_{Gewebe}}{D_{Luft}} = rac{\mu_{m,Gewebe}}{\mu_{m,Luft}}$$

$$D_{Gewebe} = \frac{\mu_{m,Gewebe}}{\mu_{m,Luft}} f_0 X \qquad f_0 = 34 \frac{J}{C}$$

E_{Photon}<0,6 MeV, für Weichteilgewebe:
$$\frac{\mu_{m,Gewebe}}{\mu_{m,Luft}} \approx 1,1$$

Physikalische Begriffe Biologische Wirkung zur Charakterisierung der Strahlung Energiedosis (D) Wirksamkeit der Strahlung Physikalische Empfindlichkeit des Gewebes Dosis f_0 Ionendosis (X) Messtechnische Dosis

Die biologische Wirkung...

→ Deterministische Wirkung (z.B.: Strahlentherapie)

Typisch

- mit einziger Strahlungsart
- ein Organ wird bestrahlt

Energiedosis

Biologische Wirkung

→ Stochastische Wirkung (z. B. : Strahlenschutz)

Typisch

- mit mehreren Strahlungsarten
- mehrere Organe werden bestrahlt

Energiedosis

Biologische Wirkung

3. Äquivalentdosis

Energiedosis

Wichtungsfaktoren

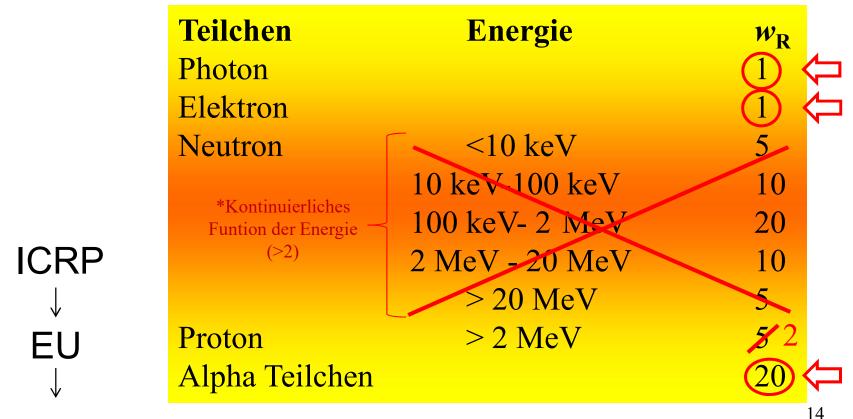
Biologische Wirkung

Wichtungsfaktor: Wirksamkeit der Strahlung Empfindlichkeit der Geweben

Äquivalentdosis:
$$H_{\rm T} = \sum_{\rm R} w_{\rm R} D_{\rm T,R}$$

[Sv]

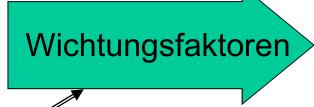
 D_{TR} Energiedosis der Strahlung R in einem Organ T. Strahlungswichtungsfaktor $\mathcal{W}_{\mathtt{R}}$


Rolf Maximilian Sievert

z. B.:

$$H_{\rm Haut} = w_{\rm alpha} D_{\rm Haut, alpha} + w_{\rm beta} D_{\rm Haut, beta} + w_{\rm gamma} D_{\rm Haut, gamma}$$

Wichtungsfaktor W_R


 w_R gibt an, um wieviel die Wirksamkeit der Strahlung grösser ist, als die der γ -Strahlung. (Bei der stochastischen Schädigung!)

Staatliches Gesetz

4. Effektivdosis

Biologische Wirkung

Wichtungsfaktor: Wirksamkeit der Strahlung

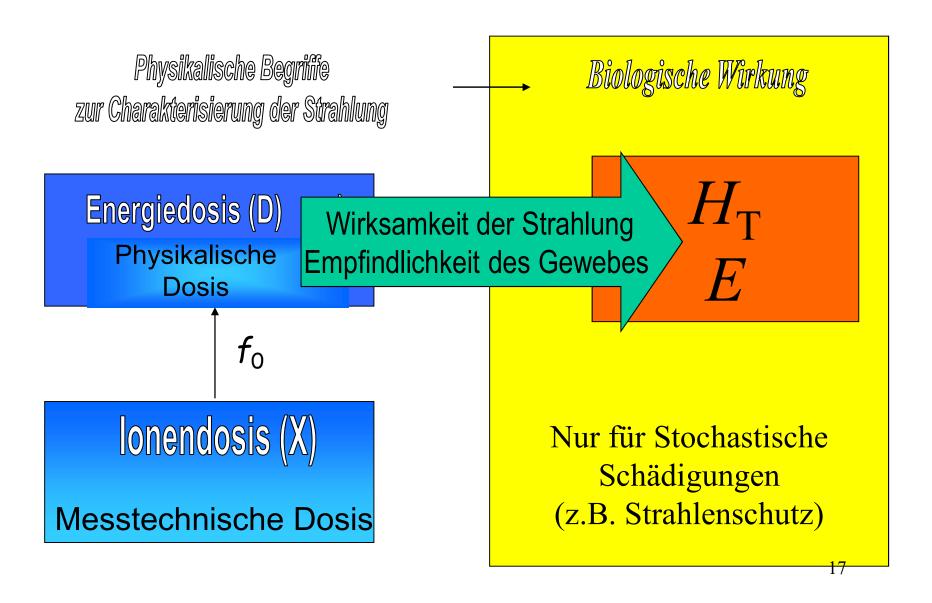
Empfindlichkeit der Geweben

Effektivdosis:

$$E = \sum_{\mathbf{T}} w_{\mathbf{T}} H_{\mathbf{T}}$$

[Sv]

W_T gibt an, die Wahrscheinlichkeit dass die Stochastische Schädigung als Ergebnis der Bestrahlung des gegebenen Organs *T.*


$$\sum_{\mathbf{T}} \mathbf{w}_{\mathbf{T}} = 1$$

Bei einer homogenen Ganzkörperbestrahlung: E = H

Wichtungsfaktor W_T

Gewebe	$\mathbf{w}_{\mathbf{T}}$	Gewebe	${ m w}_{ m T}$
Rotes			
Knochenmark	0,12	Speiseröhre	0,04
Dickdarm	0,12	Leber	0,04
Lunge	0,12	Schilddrüse	0,04
Magen	0,12	Knochenoberfläche	0,01
Brustdrüse	0,12	Gehirn	0,01
Andere Geweben	0,12	Speicheldrüse	0,01
Gonaden	0,08	Haut	0,01
Blase	0,04		

Zusammenfassung der Dosisbegriffe

Berechnung der Energiedosis bei einem γ-strahlenden Isotop

Punktförmige Strahlenquelle:

$$D = \frac{K_{\gamma} \Lambda t}{r^2}$$

$$K_{\gamma}: \text{ Dosiskonstante } \left[\frac{\mu G y \cdot m^2}{h \cdot G B q}\right]$$

$$r: \text{ Abstand von dem Isotop [m]}$$

$$t: \text{ Postrably proved for black } r$$

t: Bestrahlungszeit [s,h]

z.B.:
$$K_{\gamma}$$
=80 $\frac{\mu Gy \cdot m^2}{h \cdot GBq}$ für ¹³⁷Cs

1GBq ¹³⁷Cs in 1 m Abstand: 80 μGy/h

Energiedosisleistung:

$$\frac{D}{t} = \frac{K_{\gamma}\Lambda}{r^2}$$

Einige Referenzwerte: Schwellendosenwerte der deterministischen Strahlenschädigung

Knochenmark:

Erniedrigung der Blutbildung 0,5 Gy

Testikel (Hoden):

Temporäre Sterilität 0,15 Gy

Endgültige Sterilität 3,5-6 Gy

Augenlinse

Anfang der Linsentrübung 0,5-2 Gy

Cataracta 5 Gy

Haut:

Temporäre Erythema 2 Gy

Erythema 6 Gy

Temporäre Epilation 3 Gy

Bei einer Ganzkörperbestrahlung: Median letale Dose: 4 Gy

Letale Dose

6 Gy

Einige typische Dosiswerte

Strahlenbelastung aus der natürlichen Hintergrundstrahlung 2,4 mSv/Jahre

Ärztliche Untersuchungen (Patinentendosis)

Röntgendurchleutung: 0,2-1 mSv

CT Aufnahme: 2-8 mSv

Therapie (Interventionsradiologie):

Arzt: Hand: 100 mSv/2M**

Auge: 30 mSv/2M

Knie: 20 mSv/2M

Gonaden*: 0,5 mSv/2M

Patient: manchmal bis 1 Gy!!

Strahlentherapie: typisch 45-60 Gy

(lokalisiert in 2 Gy Fraktionen)

*unter dem Bleimantel

**2M = zwei Monaten Messperiode

Strahlenschutz

Personal:

Rechtfertigung der Anwendung der Strahlung

Optimierung ←

Rationelle Reduzierung der stochastischen Schädigung

Dosisbeschränkung

Ausschließen der deterministischen Schädigungen

Patienten:

Rechtfertigung: cost-benefit Prinzip

Optimierung: diagnostische Empfehlungen

Dokumentierung der Patientendosen

Dosisbeschränkungen

- Die deterministische Schädigungen müssen unbedingt vermeidet werden
- Risiko der stochastischen Strahlenschädigungen muss gleich oder kleiner sein als das allgemeine Risiko der Berufsunfällen* (annehmbares Risiko)

Dosisbeschränkung ≠ erlaubte Dosis!

Dosisbeschränkungen: berufliche

für die Bevölkerung

fur Patienten!

^{*} ungefähr 10⁻⁴ / Jahr

Dosisbeschränkungen*

≠erlaubte Dosis!

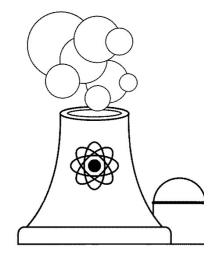
Berufliche Stahlenexposition

Ganzkörperbestrahlung 20 mSv/Jahr

(~ 10μSv/ Arbeitsstunde**)

- Augenlinse 20 mSv/Jahr
- Haut 500 mSv/Jahr
- Extremitäten 500 mSv/Jahr
- * Die Werte sind schon niedriger als was man in dem Buch findet!
- ** Zum Vergleich:

Dosisleistung der natürlichen Hintergrundstrahlung: 100 nSv/Stunde


Dosisbeschränkungen

≠erlaubte Dosis!

Bevölkerung*

- Ganzkörperbestrahlung: 1 mSv/ Jahr**
- Augenlinse 15 mSv/Jahr
- Haut 50 mSv/Jahr

- * Nur für die Strahlenbelastung aus künstlichen Quellen.
 - Die Strahlenbelastung der ärztlichen Untersuchungen zählen nicht zu.
- ** Zum Vergleich:
 - Dosisleistung der natürlichen Hintergrundstrahlung: ≈ 2,4 mSv/Jahr

Einige wichtige Bemerkungen

Leben ist gefährlich.

Gefahren können nicht absolut vermieden werden, aber das Risiko kann auf annehmbare Niveau reduziert werden!

Danke für Ihre Aufmerksamkeit!

Rechenaufgaben:

Aufgabensammlung 2.120,122

