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Permeability constant [ms]

It is influenced by:
- diffusion coefficient within the membrane
- thickness of the membrane

- partition coefficient
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02
small Lipid solubility v permeabilit
hydrophobic molecules (N:OZ sl 10 (cmis) i e Y
2
small water s 102 (cmis)
polar molecules  ethanol
Amino acids 6 i
large glucose 106 (cm/s)
polar molecules  nucleotides

Na*, K*,

Cl, HCo, R T T ]
) Lipid solubility
synthatic
lipid

i
bilayer

Figure 137 Exsarcal Codl Biokogy, 2, B 2004 Gariand Science]




Diffusion of ions
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Equivalent circuit model
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inward current

outward current
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Alteration of resting membrane
potential

2. “active” electric properties of the membrane in
excited state




Observation
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Andrew Fielding Huxley Alan Loyd Hodgkin
(1917-) (1914-1998)

The Nobel Prize in Physiology or Medicine
1963

“for their discoveries concerning the ionic
mechanisms involved in excitation and
inhibition in the peripheral and central
portions of the nerve cell membrane"
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(c) The refractory period prevents

backward movement of the action | Refractory region |

potential.

The trigger zone is in its refractory
period. Kt gates have opened and
the Nat inactivation gates have
closed. Loss of K* from the
cytoplasm repolarizes the membrane.

s | Inactive region

In the distal parts of the axon,
. local current flow from the
)| active region causes new sections
~ of the membrane to depolarize.

Local current flow

Na* entry depolarizes the
membrane, which opens
additional Na* channels.

A+ttt

Positive charge flows into
adjacent sections of the
axon by local current flow.




Conduction velocity [m/s]
140

120
100
80
60
40
20

8 10 12 14 16 18 20
Diameter [um]

The diameter of frog axons and the presence or absence of
myelination control the conduction velocity.

Node of Ranvier Myelin sheath
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Myelinated fibers
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Damage of Myelin sheath

Leak of current




release from the same sites over time
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Postsynaptic signal
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Temporal and spatial summation
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