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Many atom systems, Boltzmann distribution 
 

In a system of thermal equilibrium (constant temperature) the total 
energy (E) is distributed in such a way that an average of ½ kT 
energy corresponds to each degree of freedom 
(equipartition theorem) 
 

energy is constantly being redistributed among all particles and 
degrees of freedom. 
 

we could specify only the distribution of energy, by determining 
the numbers of particles (n0, n1, n2, …) with energies (ε0, ε1, ε2, ...)  
A series of occupation numbers {n0, n1, n2, …} = {ni} define 
state of the system. 
 

in thermal equilibrium there is a series {ni} with the highest 
probability 
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Graphical representation of the 
Botzmann distribution at various 
temperatures (T3>T2>T1) 
 
 

Phenomena based on Boltzmann distribution 
 

a) The barometric formula 
 

It is generally known that atmospheric density decreases with 
altitude. The density of the gas is given by the number of 
molecules per unit volume (n=N/V). 
 

εpot = mgh  
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b) Thermal emission of metals (electrons emitted due to heat) 
 

delocalized electrons of common orbits in metals behave in many 
aspects like gases 
 

The higher the temperature of the metal, the more electrons can 
leave the metal. 
 

Their numbers are also determined by the Boltzmann distribution.  
 

c) Nernst equation 
 

voltage of U between points A and B  
 

εpot =qeU (qe is the elementary charge unit) 
 

In thermal equilibrium the occupation numbers are given by the 
Boltzmann distribution: 
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This rule is analogous to the Nernst equation. 
 

d) Equilibrium and rates of chemical reactions 
 

In equilibrium, the distribution of 
the two states is given by: 
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The ratio nA/nB = K is called the 
equilibrium constant. 
reaction requires a certain 
amount of activation energy, 
which depends on the size of the energy barrier (εC) 
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therefore for the reaction rates: 
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Arrhenius plot 
 

The energy difference of the states 
can be obtained from the slope of 
the line fitted to the measurement 
data: 
 
 

Ideal Gases 
 

The model of an ideal gas is thought of as a large number (N) of 
spherical particles with identical masses moving randomly, 
while colliding completely elastically with each other and the 
walls of the container. All other interactions, and the total 
volume of the molecules relative to the size of the container can 
be ignored 
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(The averaging is denoted by a bar – this has to be done after 
calculating squares.) 
These formulae can also be considered as one definition of 
temperature. In this model, the pressure of the gas originates in 
the collision of particles with the container. 
 

NkTpV =  
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Real Gases 
 

we have to take into account 

1. the intrinsic volumes of the molecules, and that the 
2. molecules (approaching the wall) before collision slightly 

slowed down by the attraction of others 
 

if the volume of a single molecule is denoted by b: p(V-Nb) = NkT 
 

Applying this correction we would get smaller pressure due to the 
attraction effect mentioned above. 
 

The negative correction depends on the attraction by other 
particles on a molecule approaching the wall, and the number of 
molecules hitting the wall per unit time. Both are proportional to 
the number of molecules per unit volume, n = N/V.  
 

Thus  
 

2an
NbV

NkTp −
−

=
 

 

where a is a constant specific for 
the substance, and indicative of 
the strength of intermolecular 
forces 

Van der Waals state equation 
for real gases: 
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Van der Waals isotherms (p(V) diagram; T1<T2<Tc<T4<T5).  
(Inside the dashed line both phases (liquid and vapor) are present.) 
 

In order to liquefy a gas, it must be cooled under the so-called 
critical temperature (Tc). 



 

 1

Solid State Materials 
 
Crystalline States 
most important property is large-scale periodic order 
(highest level of order) 
 
Ideal crystals are an infinite periodic spatial sequence of 
identical structural elements. The geometric properties 
and the symmetry of the crystal is defined by the lattice 
(the crystal structure is made by putting the right ‘building 
blocks’ into the lattice at each vertex). The lattice consists 
of basic units called elementary cells. 

 
Fig. I.28. Elementary cells of NaCl (a) and Si (b) crystals. 
 
Classification: 
atomic, ionic, metallic, molecular lattice 
 
crystalline order in reality usually only extends to 
microscopic scales: microcrystals, monocrystals 



 

 2

Crystals are anisotropic substances, i.e. they have 
distinguishable directions. This can manifest, for instance, 
in the fact that within the crystal, light propagates with 
different velocities in different directions. 
 
Energy Bands 
 
As soon as the atoms get closer to form a crystal, and the 
state functions of atomic electrons start to overlap, the 
Pauli principle comes into effect. The tendency of the 
system to avoid identical quantum states is realized through 
the ‘splitting up’ of the equal energies of interacting 
electrons into N close levels. 
As N is very large, the multitude of close split levels 
forms in practice a continuous energy band. 
 

 
 

The formation of energy bands in crystals. Due to the 
decrease of atomic distances (r), the atomic energy levels 
are split up, and energy bands will form (r0 denotes the 
equilibrium distance). 
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As the interaction is most significant for the outmost, 
valence electrons, splitting happens to the greatest extent 
here as well. This band is called the valency band. 
The gaps without possible energies between consecutive 
bands are called forbidden band-gaps. 
Two bands may broaden to such an extent that the 
forbidden band-gap between them disappears completely. 
 

If there are electrons in each energy state within the valency 
band, i.e. the band is ‘completely occupied’, then energy 
can only be absorbed if a minimum amount of energy 
corresponding to the width of the next forbidden band-gap 
is available. 
The empty band of allowed states is called the conduction 
band. 
 

 
 

The band structure of insulators, semiconductors and 
conductors. Occupied bands, their occupied sections are 
shown with darker gray and unoccupied sections with 
lighter gray. The blank parts in between depict the 
forbidden band-gaps  
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Properties Determined by the Width of the Forbidden 
Band-Gap 
 
If ∆ε is of the order of a few eV, then the substance is an 
insulator at room temperature; if it is only a few tenths of 
eV, then it is a pure semiconductor. 
 
Conductivity, however, is not only affected by the number 
of mobile electrons in the conduction band, but also by that 
of the electron vacancies, i.e. holes in the valency band. 
 
Holes are also commonly called p-type (positive) charge 
carriers, as the counterpart of electrons, being n-type 
(negative) charge carriers. 
 
Conductivity may also appear in the valency band, if it 
is not completely occupied.  
These materials are proper conductors.  
 
Partial occupancy may be realized in several ways: one 
possibility is that the outermost electrons of the 
interacting atoms did not have completely occupied 
electron orbits originally (as is the case with Li); another 
would be an overlap of a saturated and an empty band 
during the broadening of energy levels (such is the case 
with Na). 
 
Optical properties: 
Insulators with a forbidden band-gap wider that 3 eV are 
transparent. 



 

 5

Creating ‘Semiconductor Properties’ by Doping 
 
From a practical point of view (electronics, transistor), so-
called doped or extrinsic semiconductors have major 
importance. 
Adding small amounts of certain foreign substances (a 
process known as doping) into a pure semi-conductor 
crystal lattice with a completely occupied valency band 
results in the creation of new electron states that provide 
the material with properties of a semiconductor with a 
very narrow forbidden band-gap. 
  
If a doping atom has a valency of five (such as P), then 
after forming four covalent bonds, the remaining fifth 
electron will occupy a loosely bound electron state in the 
forbidden band-gap called donor level. 
If the doping atoms have a valency of three (such as Al), 
then an unpaired valence electron of one of the surrounding 
Si atoms can form a state capable of taking an electron, 
called acceptor level. 
 

 
 

Band structure of doped semiconductors.  
Black dots are electrons, white dots are electron vacancies, 
i.e. holes. The thin dashed line denotes the multitude of 
donor and acceptor levels. 
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Lattice Defects 

 
Perfect crystal and lattice defects along granular borders 

 
Point defects: 
a) empty vertex, vacancy or Schottky-defect 
b) foreign particle in the lattice (at a vertex), doping 
c) foreign particle in the interstitial space,  
d) lattice particle in the interstitial space (interstitia) 
a) and d) together, Frenkel-defect 
From the law of Boltzmann distribution we also expect that 
perfect crystal structures could only be formed at zero 
temperature (0 K). 
 
Liquids 
Liquid states are governed by short-range order (with a 
range of a few to few hundred times the binding distance). 
Liquids are thus isotropic, i.e. they have no directional 
dependence.  


