Medizinische Informatik Klinische Versuchsplanung

(Einige) Gebiete der klinischen (statistischen) Studien

- Fallzahlschätzung, Konfidenzintervalle
- Survival-Analyse
- Äquivalenznachweise
- · Randomisation und Verblindung
- Phase I-IV Studien

Entscheidung	Wirklichkeit		
Entscheidung	$H_o: \pi_1 = \pi_2$	$H_0: \pi_1 \neq \pi_2$	
Nicht-Ablehnung von H _o (Annahme von H _o)	Richtige Nicht-Ablehnung	Falsche Nicht-Ablehnung (β-, Typ II-Fehler)	
Ablehnung von H _o	Falsche Ablehnung (α-, Typ I-Fehler)	Richtige Ablehnung	

Definition: Klinische Studie

Eine klinische Studie untersucht die Wirkung (und ihr(e) Maß/Größe) einer (oder mehrerer) Intervention(en) an Menschen.

Intervention (z.B.):

Gruppe

- Behandlung (Vergleich zw. Behandlungsmethoden)
- Anwesenheit eines Faktors, Faktoren bei Krankheiten (z.B.: Übergewicht als Risiko für Herz-Kreislauf-Erkrankungen)

Asymptotischer 4-Felder Test zum Vergleich von 2 Raten

$$r_1 = a/(a+b) = a/N_1; \quad r_2 = c/(c+d) = c/N_2 \qquad \qquad \text{für genügend große N-werte:} \\ r_1 ^ \sim \pi_1; \; r_2 ^ \sim \pi_2$$

Testhypothesen: Transformation der Raten zur Prüfgröße: $H_{0}\colon \pi_{1}=\pi_{2}\quad\text{vs. }H_{1}\colon \pi_{1}\neq\pi_{2}$ also: zweiseitige $Z=\frac{(r_{1}-r_{2})}{\boxed{r_{1}(1-r_{1})}_{\perp}r_{2}(1-r_{2})}$

$$Z = \frac{(r_1 - r_2)}{\sqrt{\frac{r_1(1 - r_1)}{N_1} + \frac{r_2(1 - r_2)}{N_2}}}$$

Entscheidungsregel über Normal-Approximation:

 H_o : Z \rightarrow $\mathcal{M}(0,1)$ Standardnormalverteilung

$$|Z|_{berechn.} \ge Z_{\left(1-\frac{\alpha}{2}\right)}$$
: H_0 : ablehnen

einseitig oder zweiseitig? Warum 1-α/2?

Beispiele:

	Erfolg	kein Erfolg		Г
Intervention	80	20	100	lr
Kontrolle	70	30	100	

	Erfolg	kein Erfolg	
Intervention	800	200	1000
Kontrolle	700	300	1000
		- 100	$\overline{}$

Ist diese Tabelle richtig?

Fallzahlschätzung für Differenz von 2 (unbekannten) Raten

Raten (d.h. relative Häufigkeiten):

- r_i: Erfolg bei Interventionen/Anzahl-Interventionen
- r_K: Erfolg bei Kontrollen/Anzahl-Kontrollen
- r_{...}: untere Grenze des Konfidenzintervalls für Differenz der Raten
- r_o: obere Grenze des Konfidenzintervalls für Differenz der Raten

Aufgrund der Theorie:

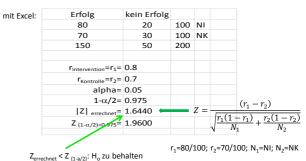
$$r_{u} = (r_{l} - r_{K}) - \left(\frac{1 - \frac{\alpha}{2}}{\sqrt{\frac{r_{l}(1 - r_{l})}{N_{l}} + \frac{r_{K}(1 - r_{K})}{N_{K}}}} \right)$$

$$r_{o} = (r_{l} - r_{K}) + z_{\left(1 - \frac{\alpha}{2}\right)} \left[\frac{r_{l}(1 - r_{l})}{N_{L}} + \frac{r_{K}(1 - r_{K})}{N_{L}} \right]$$

$$r_u = (r_I - r_K) - d$$
 $r_o = (r_I - r_K) + d$

$$KI_{(1-\alpha)} = (r_I - r_K) \pm d$$

wenn $|Z| \ge Z_{\left(1-\frac{\alpha}{2}\right)}$: H_0 : ablehnen

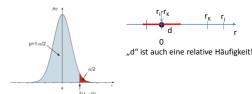


Zweiseitiges Konfidenzintervall für Differenz von 2 (unbekannten) Raten

Signifikanzniveau: α (an beiden Enden der Verteilungsfunktion $\alpha/2$) Konfidenzniveau: γ=1-α

$$KI_{\gamma=(1-\alpha)} = (r_l - r_K) \pm d$$
 $d = z_{(1-\frac{\alpha}{2})} \left| \begin{bmatrix} r_l(1-r_l) \\ N_l \end{bmatrix} + \frac{r_K(1-r_K)}{N_K} \right|$

 $z_{\left(1-\frac{\alpha}{2}\right)}$: z-Wert der Standardnormalverteilung bei p=1-lpha/2



Beispiel:

Erfolgsrate bei neuer Intervention: r₁=0.8;

Erfolgsrate mit alter Methode: r₂=0.6;

In beiden Untersuchungen sei der Stichprobenumfang 100;

Wie groß ist das Konfidenzintervall mit einer γ =0,95 (d.h. KI_{0.05}) für die Differenz der Raten?

E1	80	d=	0.1240
E2	60	r _{untere} =	0.076
N1	100	r _{obere} =	0.324
N2	100		
r1	0.8		
r2	0.6		
r1-r2=	0.2		
alpha=	0.05		
1=alpha/2=	0.975		
z1-alpha/2=	1.960		
r(=(r1+r2)/2)=	0.7		

Problem:

Wir möchten die Länge (2d) des Konfidenzintervalls verkleinern (d.h. bei dem selben Konfidenzniveau γ =0,95). Wie viele Fälle soll man beobachten (wie groß muss der Umfang sein)?

4-Felder-Test Fallzahlschätzung für Differenz von 2 (unbekannten) Raten

 $r_1=0.8$; $r_K=0.7$; $\alpha=0.05$; $\gamma=0.95$; $(1-\alpha/2)=0.975$; $(1-\alpha/2)=\frac{1+\gamma}{2}$

Fallzahlschätzung für Differenz von 2 (unbekannten) Raten

$$d = z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\left[\frac{r_{l}(1-r_{l})}{N_{l}} + \frac{r_{K}(1-r_{K})}{N_{K}}\right]} \qquad \quad \text{mit N}_{i} = N_{K} = N$$

$$N = \frac{z_{(1-\alpha/2)}^2}{d^2} \sqrt{[r_I(1-r_I) + r_K(1-r_K)]}$$

Beispiel:

Erfolgsrate bei neuer Intervention: r₁=0.8; Erfolgsrate mit alter Methode: r₂=0.7; d=0.05 N=?

Formulierung der Fragestellung:

- · die alte Methode (z.B. Behandlung) ergibt 70% Erfolg
- · mit neuer Methode ist 80% Erfolg erwartet
- wie groß muss der Stichprobenumfang sein, diesen Unterschied statistisch
- wir möchten einen α -Fehler [α] und einen β -Fehler [β] erreichen.

- Die zwei Raten übereinstimmen, d.h. die Differenz der Raten/Häufigkeiten tritt wegen Zufall auf (andere Formulierung: die Differenz der Raten/Häufigkeiten weicht nicht signifikant von Null ab.)
- · Diese Differenz kann sowohl kleiner, als auch größer sein.
- → Zweiseitige Fragestellung.

Formel für asymptotischen Fall:

Bezeichnungen:

 N_1 , N_2 (z.B.: N_1 , N_K) — Vereinfachung: $N_1=N_2=N$; π_1 , π_2 (z.B.: r_I , r_K);

 $\pi = (\pi_1 + \pi_2)/2;$

 α und β als entsprechende Fehler;

zweiseitige Fragestellung:

$$N \approx \left(z_{1-\frac{\alpha}{2}} + z_{1-\beta}\right)^{2} [\pi_{1}(1-\pi_{1}) + \pi_{2}(1-\pi_{2})]/(\pi_{1}-\pi_{2})^{2}$$

einseitige Fragestellung:

$$N \approx \left(\mathbf{z_{1-\alpha}} + z_{1-\beta}\right)^2 [\pi_1(1-\pi_1) + \pi_2(1-\pi_2)]/(\pi_1 - \pi_2)^2$$

Güte 1-
$$\beta$$
, aufgrund N
$$z_{1-\beta} = \frac{|\pi_2 - \pi_1| N^{\frac{1}{2}}}{\left(2\pi(1-\pi)\right)^{1/2}} - z_{1-\frac{\alpha}{2}}$$

Überlebenszeitanalyse: Der Log-Rang-Test

- Diploider Tumor Anaploider Tumor Beobachtung

 Vollständig ₹ 0,6· £ 0,5∙ 0.0 0 50 100 150 200 250 300 350 400 450 Zeit (Wochen) Abb. 1 Kaplan-Meier Kurven für die Überlebenszeit der 80 Zungenkrebs-patienten. Es wird in orange/blau die Wahrscheinlichkeit gezeigt, dass ein Patient mit aploidem/diploidem Tumor eine Zeit (in Wochen) überlebt.
- · Fallzahlschätzung, Konfidenzintervalle
- Survival-Analyse
- Äguivalenznachweise
- · Randomisation und Verblindung
- Phase I-IV Studien

Dtsch Med Wochenschr 2007; 132: e39-e41 · A. Ziegler et al., Überlebenszeitanalyse: Der Log-Rang-Test

Beispiel 1.:	p _i =	0.8	z1-alpha/2	1.960
$\pi_1 = 0.8;$	p ₂ =	0.7	z1-beta	1.645
1 ' '	alpha=	0.05	Term 1.	12.99
$\pi_2 = 0.7$;	beta=	0.05	Term 2.	0.37
$\alpha = 0.05$ (2-seitig)	1-beta=	0.95	Term 3.	0.01
, , ,			N≈	481.00
$\beta = 0.05 (1-\beta=0.95)$				

Nerrechnet=	481	Zaehler=	2.19317122
p1=	0.8	Nenner=	0.612372436
p2=	0.7	Z(1-beta) berechnet,N=	1.621
alpha=	0.05	beta(berechnet, N)=	0.052
beta (gezielt)=	0.05		
pi=	0.75		
Z _{1-alpha/2}	1.960		
z1-beta (gezielt)	1.645		

Literatur:

http://imsieweb.uni-koeln.de/lehre/q1/Q1-06-Konfidenzintervalle.pdf http://imsieweb.uni-koeln.de/lehre/klinstud/KlinStud07-Fallzahlschaetzungen.pdf http://de.wikipedia.org/wiki/Konfidenzintervall_einer_unbekannten_Wahrscheinlichkeit

Überlebens-Daten

Sind Zeiten bis zum Auftreten eines Ereignisses, Lebensdauern/Zeitdauern (Zeitintervalle) von Start- bis Ziel- bzw. Endereignis

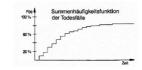
Ist das Endereignis "Tod" aufgetreten, → "Lebensdauern/Überlebenszeiten"

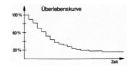
Definitionen:

F(t) gibt den Anteil der Individuen an, die zum Zeitpunkt t, t>=0, bereits gestorben

S(t)= 1-F(t) ist die Überlebenskurve. Sie gibt den Anteil der Individuen zum Zeitpunkt t an, die noch leben.

Auf Grund der Definitionen, die F(t) ist eine Summenhäufigkeitskurve.





Kaplan-Meier-Kurve

Begriffe/Definitionen:

Ereigniszeiten t_i: 0<=t₁<t₂<...<t_i Zeitpunkte der Beobachtungen;

n_j: Anzahl der Individuen unter Risiko zum Zeitpunkt tj (einschließlich später zensierte);

d_i: Anzahl der Ereignisse (Todesfälle) zum Zeitpunkt t_i;

 $r_j = d_j / n_i$ ist der Anteil der zum Zeitpunkt t_j Gestorbenen unter denjenigen, die t_{j-1} überlebt haben (bzw. die zu t_j unter Risiko stehen);

 $s_i = (n_i - d_i) / n_i = (1 - d_i / n_i)$ ist der Anteil der den Zeitpunkt t_i Überlebenden unter denjenigen, die t_{j-1} überlebt haben (bzw. zu t_i unter Risiko stehen);

$$S(t_1) = S_1$$
, $S(t_2) = S(t_1) \cdot S_2 = S_1 \cdot S_2$, $S(t_1) = S(t_{i-1}) \cdot S_1 = S_1 \cdot S_2 \cdot \cdot S_i$ für $t_i \le t$

S(t_i) ist einer Punkt der Überlebenskurve — K-M-Kurve

 $\it Mediane \ Überlebenszeit$: der Zeitpunkt $t_{\rm M}$, an dem die Hälfte der Patienten/Individuen noch lebt.

Äquivalenznachweise

- · Fallzahlschätzung, Konfidenzintervalle
- Survival-Analyse
- Äquivalenznachweise
- · Randomisation und Verblindung
- Phase I-IV Studien

Problem/Frage:

Ist ein statistisch signifikanter Unterschied auch klinisch relevant?

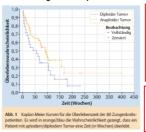
δ= Δ,= μ_1 - μ_2 : ist die kleinste Überlegenheit von μ_1 vs. μ_2 , die klinisch relevant ist. A= (-ε − δ) ist Äquivalenzbereich, z.B.: A= (-δ − δ) μ : Mittelwert, Häufigkeit,...

 $KI_{(1-2\alpha)}$ -Konfidenzintervall für $\Delta=\mu_T-\mu_R$ (T: treatment, R-Referenz)

obere- und untere einseitige (1-α)-KI

Behandlungen sind "äquivalent" mit Sicherheitswahrscheinlichkeit (1- α), wenn A beinhaltet das ganze (1- 2α)-KI

Logrank-Test (Mantel-Haenszel)



Der Log-Rang-Test ist das Standardverfahren in der Überlebenszeitanalyse für einfache Gruppenvergleiche in klinisch-therapeutischen Studien. Mit diesem nichtparametrischen Test lässt sich statistisch überprüfen, ob das Mortalitätsrisiko in zwei oder mehr Gruppen verschieden ist.

Der Logrank-Test ist ein (nichtparametrischer) Signifikanztest, der 2 (unabhängige) Survivalfunktionen auf Gleichheit überprüft, unter Berücksichtigung von zensierten Daten.

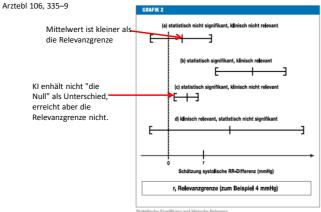
Zensierte Daten (auch trunkierte (gestutzte) Daten) sind Daten, bei denen nicht alle Werte einer Statistische Variablen bekannt sind; z. B: das Ereignis ist noch nicht eingetreten/wenn Kontakt zum Patienten abgebrochen ist.

Literatur:

Dtsch Med Wochenschr 2007; 132: e39–e41 \cdot A. Ziegler et al., Überlebenszeitanalyse: Der Log-Rang-Test;

http://imsieweb.uni-koeln.de/lehre/klinstud/KlinStud04-Survival.pdf

du Prel J-B, Hommel G, Röhrig B, Blettner M, 2009: Konfidenzintervall oder p-Wert? Teil 4 der Serie zur Bewertung wissenschaftlicher Publikationen. Dtsch



Bioäquivalenz

Quotient der Erwartungswerte der beiden Behandlungen $\Delta = \mu_T/\mu_R$

Bei Bioäquivalenz gibt der Äquivalenzbereich A = (80% - 125%) den bioäquivalenten Bereich an. Ursache: $\lg(0.8) \sim -0.1 \lg(1.25) \sim +0.1$;

→ die Abweichung ist kleiner als ± 0,1 für einen Quotient.

Randomisierungstechniken

- · einfache Randomisierung: Zuteilung auf Grund erzeugten Zufallszahlen
 - o Münzwurf, Würfeln, Zufallszahltabellen,....;
 - o Nachteil (z.B.):
 - Umfänge der Behandlungsgruppen kann unterschiedlich sein Verschlechterung der Teststärke (Güte 1-β)
 - Ungleichverteilung der Störfaktoren in den Gruppen
- Blockrandomisation: in einem Block bestimmter Länge (z.B. 2,4,6...) sind die Patienten zufällig einer Behandlungsart zugeteilt (AABB, ABAB...);
 - o Balanciertheit der Gruppen/Zuteilungen ist möglich
 - Nachteil (z.B.):
 - zufällige Blocklänge
 - > bei bekannten Blocklänge kann Code aufgebrochen werden
- Stratifizierte (geschichtete) Randomisierung:

Ursache: bekannte/unbekannte Risko-Faktoren, Unbalanciertheiten können die Auswertungen/Ergebnisse verfälschen.

- Schichten auf Grund z.B.: Alter, Geschlecht, Stadium, Zentren, Ausgangslage,...
- o Randomisierung innerhalb einer Strata
- o Vorteil (z.B.): Varianz und die Einflüsse der Störfaktoren nehmen ab.

Randomisation (Randomisierung/Zufallszuteilung)

Sie ist eine Technik für jeden Patienten zufällig eine Zuteilung zu einer Behandlungsgruppe zu realisieren, wobei alle Gruppen mit gleicher Wahrscheinlichkeit ausgewählt werden können.

- Fallzahlschätzung, Konfidenzintervalle
- Survival-Analyse
- Äquivalenznachweise
 Randomisation und Verblindung
- Phase I-IV Studien

امز7

- · bewussten und unbewussten Störgrößen auszuschalten;
- zu verhindern den Prüfer-Bias (z.B.: abhängig von weiteren Umständen teilt der Prüfer einen Patienten zu einer oder anderer Gruppe zu: Verzerrungen (Bias) können in Behandlungseffekten auftreten);
- zu garantieren, dass statistische Tests g
 ültige/valide Signifikanz-Niveaus ergeben.

Verblindung

In klinischen Studien spricht man von Verblindung, wenn

- · die Prüfärzte, das Pflegepersonal,
- · die teilnehmende Patienten und auch
- die Personen, die mit dem Monitoring, dem Datenmanagement und der Auswertung der Studie betraut sind,

nicht über die individuelle Behandlungszuteilung der Patienten **informiert sind** und ihre Handlungen somit nicht durch dieses Wissen beeinflusst sein können.

Die Verblindung hat das Ziel, systematischen Unterschieden in der Behandlung der Patienten oder der Bewertung des Therapieerfolgs vorzubeugen.

Verblindungsniveaus:

unverblindet (offen)

- · Chirurgie, Diät etc.
- · Teilnehmer und Untersucher kennen Therapiegruppe
- · Bias in beiden Richtungen

einfach-blind

· Teilnehmer blind

doppel-blind

· Teilnehmer und Untersucher blind

dreifach-blind

· Teilnehmer, Untersucher, Auswerter etc. blind

Notfälle - zum Beispiel schwere Nebenwirkungen - können jedoch bei einzelnen Probanden die verfrühte Aufdeckung der Zuordnung zu den Untersuchungsgruppen notwendig machen (Entblindung)

Phase I: Erstanwendung am Menschen

Meist gesunde Freiwillige ("Probanden"), gegebenenfalls besondere Patientengruppe (z. B. bei Studien mit Zytostatika)

- · Verträglichkeit, Pharmakokinetik/-dynamik
- · Hinweis auf wirksame Dosis (eventuell)/ Arzneimittelinteraktionen

Phase II: Einstieg in die therapeutische Anwendung am Patienten

Begrenzte Zahl von Patienten der anvisierten Indikation Ziele:

- Verträglichkeit und Dosisfindung
- Wirkung (pharmakologische Effekte)/Wirksamkeit (Heilerfolg)
- Pharmakokinetik in Spezialfällen (z. B. Leber-, Nierenerkrankung)

Phase III: Breite Anwendung im anvisierten Indikationsgebiet, Beleg für die

Einsetzbarkeit als Arzneimittel [Zulassung] Patienten der anvisierten Indikation in Klinik/Praxis

Ziele:

- Beleg der Wirksamkeit an Patienten in unterschiedlichen Populationen
- Ausreichende Beurteilung der Verträglichkeit, besondere Patientengruppen
- · Verhalten unter Langzeitbehandlung, Vergleich mit etablierter Therapie

Phase I-IV - Studien

- Fallzahlschätzung, Konfidenzintervalle
- Survival-Analyse
- Äquivalenznachweise
- · Randomisation und Verblindung
- Phase I-IV Studien

Phasenmodell klinischer Studien

Phase 0: Präklinische Entwicklung

Ziele:

1. Abklärung möglicher **toxischer Effekte**, wie Einfluss auf zahlreiche in Laboruntersuchungen bestimmte Größen (Klinische Chemie, Hämatologie), Fertilität, Embryotoxizität/Teratogenität, Cancerogenität

- 2. Abklärung *sicherheitspharmakologischer Aspekte*, wie Beeinträchtigung von Herz/Kreislauf, Einfluss auf Körpergewicht
- 3. Hinweise auf *erwünschte pharmakologische Effekte* in vitro/in vivo

Phase IV: Klinische Prüfung nach der Zulassung: Erkenntniserweiterung über die Substanz, Einsatz unter Praxisbedingungen

Einsatz an großer Zahl von Patienten entsprechend den Vorgaben der Zulassungsbehörden (unter Praxisbedingungen)
Ziele:

- · Quantifizierung seltener Nebenwirkungen
- Detailuntersuchungen in bestimmten Patientengruppen
- Einfluss auf Spätfolgen einer Erkrankung (Folgemorbidität, Letalität)
- Tatsächlicher Einsatz des Präparates (→ "Anwendungsbeobachtungen")
- Hinweis auf weitere Indikationen, zu modifizierende Dosis (→ Phase II)