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Spectroscopy
(Absorption and emission spectroscopy)

* Analysis of the wavelength dependence of
the transmitted or emitted light.

* |Information:
— identification of atoms and molecules,

— detection of changes in the molecular
structure (conformation)

— determination of the concentration

Why is light absorbed or emitted?

Jablonski diagram
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Excited electron and
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*only for molecules! (not for atoms)




Why is light absorbed or
emitted?
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Absorption spectroscopy
(UV-VIS)

As a reminder:

law of absorption: J=J,-e** where y(material,c,\)
Lambert-Beer law:
A=lg Jo =&(A)cx
spectrum: A(L) J
measurement: spectrophotometer
(details: see pract. exc.)
reference solution (J,)

information: identification (A.,,), concentration (A)

max

Infrared spectroscopy

Infrared light: A=800 nm - 1 mm
MIR (mid-infrared) : 2,5-50 um
absorption spectroscopy

the absorbed infrared radiation excite
molecular vibrations

very specific for the structure of the
molecule

special method for detection:
FT spectrometer

Molecular vibrations

The electrons are light (m,<<m_,eus), they

can follow the movements of the nuclei
easily, therefore the movements of the
nuclei are independent of the movements
of the electrons.

Classical physical description: the chemical

bond is represented by a spring




Molecular vibrations:

0 : m | Il'lg

distance of centre of mass
nuclei

D,

; i

known from elementary mechanics:

1 |D
I\ f=orim,

'
m, 4 m,

/\NWUU\ centre of mass _ £1+£2 zﬁ_i_l: m, _ m, +m,
m, m, F = DA/ 62 62 ml ml
m+m. D L The wavelength: ;- S _ 9 ¢ [Mreduan
it follows: —*'—2="—"2  substituting in D
m
1 f _1 b, In the IR spectroscopy the wavenumber (v) is
27\ m, used, which is the reciprocal of A:

D

/\WW frequency of the vibration:

I“l 4 mz
u")mcgk{"}?.ép]mm f — 1 D(ml + mZ)
2 mm,

m.m _
m., =—— is called as reduced mass
m, +m,

The frequency:  _ 1 | D

21\ M,y

L1 D v: number of
pot \/7 waves in a
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Example: CO
The measured wavenumber: v=2143 cm-!
= 7\,=4,67Mm = f=6,43 1018 Hz = D=1875 N/m
mc=2:10-26kg, my=2,7-1026kg

if v is known, D can be calculated
if D is known, v can be calculated




Classical vs. quantum physics

Classical physical Quantum mechanical
picture picture
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Vibrations of the large molecules

Molecule consisting of N atoms:
» 3N degree of freedom,

3-3 are the rotations and translations
of the whole molecule

» 3N-6 vibrational degree of freedom
(3N-5 for the linear molecules)

» 3N-6 independent normal vibrations

Normal vibrations

All the atoms vibrate

» with the same frequency but
 with different amplitude and
« in different direction.
Example: water

N\ N
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symmetric stretching asymmetric stretching bending

3756 ¢cm™! 1595 cm’!

Normal vibrations of water
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librations

These are no vibrations! These are rotations!




Typical vibrational frequencies (wavenumbers)
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Example: Formaldehyde

Gas Phase Infrared Spectrum of Formaldehyde, H-C=0
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http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/InfraRed/infrared.htm
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Vibrations of the macromoleclues

Complex global vibrations -5 W
Localised vibrations, e.g.: '
* CH, vibrations of the lipids ~ -o- <5

« amid vibrations of proteins

(acetamide) 25-0 9,79
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Types of Vibrational Modes. Figure from Wikipedia

Applications

phase transitions in lipids

Absorbance
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Pharmaceutical applications

 synthesis: identification of the intermedate
and the end product

» determination and justification of the
molecular structure

» detection of the metabolites
+ quality control (purity)

* Remark.: Lambert-Beer law is valid,
determination of concentration is possible

Example: Identification of
molecules

C,HO D/ \J& Sigr O Y\OH W)LH

cyclobutanal 2-butanone ethyl vinyl ether  2-methyl-2-propen-1-ol 2-methylpropanal

uuuuuuuuuuuuu

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/InfraRed/infrared.htm

The technique of the measurement :
Fourier transform spectrometer (FTIR)

conventional (dispersion) spectrometer

sample
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Luminescence spectroscopy

Measurable quantities in
Fluorescence Spectroscopy

E « Wavelength of the exciting light
. » Wavelength of the emitted light (fluor.,
! T, phosph.)
» Time dependence of the emitted light
 Polarisation of the emitted light
o * Intensity of the emitted light
0 & :
UV-VIS IR Raman Fluores- Phosphores-
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Scheme of the fluorescence s .
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Fluorescence quantum yield(Q)

I(nr kf

T

Quantum yield: Q =

_ number of emitted photons
~ number of absorbed photons

kf
K, +k,
ke probability of the transition
with light emission (fluoresc.)
k., probability of nonradiating

transition
dyes, fl. markers Q~1

Qq

The lifetime of the excited state

E

From N excited molecules during
At time

—AN=(k¢+k,,)NAt will go back to
ground state.

Differential equation:

dN

T —(k¢ +kq N
t
Solution: - -
N — Noe (kf'*'knr)t — Noe T

1
where 7 = is the lifetime of the excited state
kf + nr

Decay of the fluorescence intensity

The number of emitted photons is proportional
with AN-el, i.e. it is proportional also with N,-which
means it is decays exponentially with the decay

constant of .

How to measure?

-Pulsed illumination (flashlamp, or pulse laser)
-Photon counting as function of time

Quantum yield and life time can be also defined
for phosphorescence, using similar definitions.

Typical lifetimes:
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Fluorescence polarisation

illumination with

polarized light idbii @ Yo
,i P "r___ ; X @"

LA o % -
p

polarization degree of the emitted light is measured
The fluorescent molecule can rotate between the
absorption and the emission = dinamic information
rotational correlation time (how fast the rotational
diffusion is?)

6.28

Ligth scattering

\
Rayleigh Raman T i
}‘scattz}\'illum 7\'scatt¢ 7"i|lum
Raman scattering: E
7‘scat’[;'f 7‘i|lum = fscatt;é fillum Sl
= Ephoton,scatt i Ephoton,illum
Where is the energy?
Excites vibrations of the
molecule (cfr. IR)
very weak (~10-%) =

IR Raman

Equipment

Not_

i J Filter

—iMicroscope

./ Objective
Sample —

Pharmaceutical application




Rayleigh scattering

Size of the particle: a << A

The scattered intensity: a5
‘]scatt - ‘]ON F
Information: size, contentration (quantity)

(e.g. colloids)

Meaurement of the Rayleigh

if ‘]scatt<<‘]0

Jscat

(Nephelometry)

. IS measured|

If ‘]scatt ~ ‘]0

J is measured
(turbidimetry)

scattering

sample
Light source
e Detector (a)
.z J ///_-—n———_;_
4S5 | —

Jscatt
Detector (b)

The same technique as for the absorption
specctrosopy but now J is reduced due to the
scattering (and not due to absorption).




