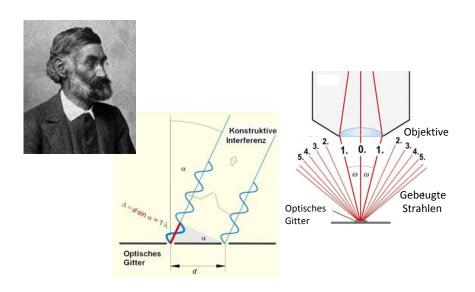
Methoden der Strukturenuntersuchung

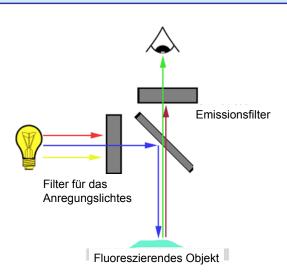

Lichtmikroskopische Techniken
Rastermikroskope
Elektronmikroskope
Diffraktionsmethode

Abbe´sches Prinzip und Auflösungsgrenze

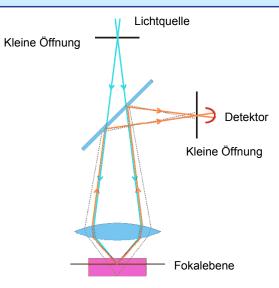
 $\delta = 0.61 \cdot \lambda / (n \cdot \sin \omega)$

Mit λ =400 nm, n=1,6 und ω \approx 90° ist d \approx 150 nm

Auflösungsgrenze des Lichtmikroskops

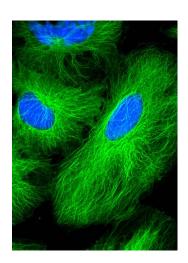

Typische Grössen

	m		
	10 ⁰	meter	Mann
	10 ⁻³	millimeter	Abstand der man mit Auge sehen kann
	10 ⁻⁶	mikrometer	Zelle (z.B. Blutkörpern)
			Ø 7μm
	10-9	nanometer	Protein Protein
	10-10	– Angström	Durchmesser des Atoms,
			H Atom ∅ ≈ 1 Angström (Å)
	10-12	pikometer	Wellenlenge der Röntgenstrahlung
	10-15	femtométer	Atomkern Atomkern

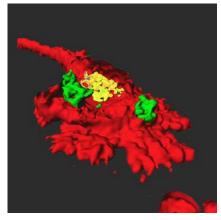

Spezielle Lichtmikroskopische Techniquen

- Siehe Praktikum
- Konfokale Mikroskopie
- Zweiphotonmikroskop
- Fluoreszenzkorrelationsspektroskopie

Fluoreszenzmikroskop

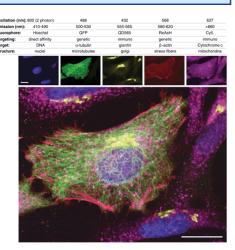


Konfokales Mikroskop


Konfokales Mikroskop

Aus Tubulin bestehende Mikrotubli in Zellen

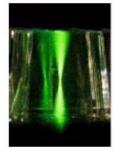
Konfokales Mikroskop


Dendritische Zelle mit Pollenteilchen. 3D Aufnahme mit konfokalem Mikroskop.

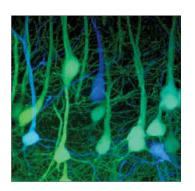
Gleichzeitige Anwendung von mehreren fluoreszierenden Markierungen

He-La Zellen markiert mit fünf unterschiedlichen Fluoreszenzmethoden.

Der Masstab ist 20 µm.



Fluoreszenzanregung mit zwei Photonen Zweiphotonenmikroskop

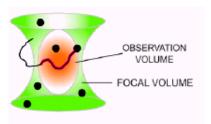


IR Laser

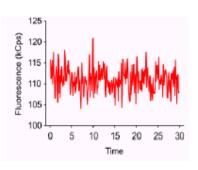
Fluoreszenzemission bei Einphoton- und Zweiphotonenanregung.

Zweiphotonenmikroskopie

Visual Cortex von genetisch manipulierten Mause die (GFP) produzieren.

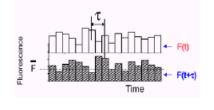

Fluoreszenzkorrelationsspektroskopie (FCS)

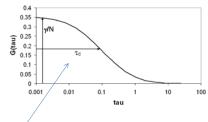
Fluktuation der Molekülen in einem sehr kleinen Volumen: fl


Konzentration: 10 nM Anzahl der Moleküle in

Beobachtungsvolumen beträgt

durchschnittlich: 6




Fluktuationen des Fluoreszenzlichtes:

Autokorrelationsfunktion

$$G(\tau) = \frac{\langle \delta I(t) \delta I(t+\tau) \rangle}{\langle I(t) \rangle^2} = \frac{\langle I(t) I(t+\tau) \rangle}{\langle I(t) \rangle^2} - 1$$

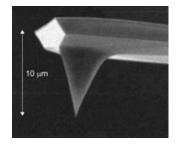
 τ_d – charakteristische Zeit der Diffusion eines Moleküls

Diffusionskonstante ist abhängig von der Molekülengröße!

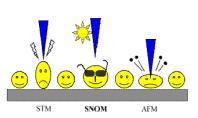
Welche Information kann man erhalten?

Ligandenbindung

Kleines Ligandmolekül mit Fluoreszenzmarkierung + großes Eiweißmolekül: *Diffusionskonstante* ändert sich


Aggregation

Markierte Proteine Lichtintensität von Dimere, Tetramere... ist höher


Konzentration Reaktionsgeschwindigkeit Diffusion in der Inneren der Zellen

Die Autokorrelationsfunktion muss zu einer Modellfunktion angepasst werden um diese Informationen aus der Parametern der angepasste Funktion zu erhalten.

RASTERSONDENMIKROSKOPE

Rastermikroskope (Scanning Probe Microscopes)

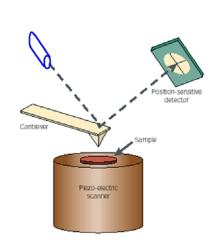
STM:

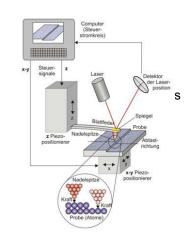
Scanning Tunneling Microscope Rastertunnelmikroskop

SNOM:

Scanning Nearfield Optical Microscope

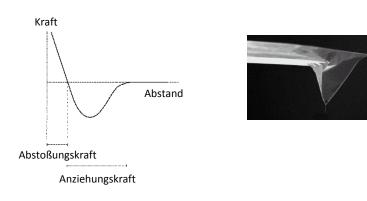
AFM:


Atomic Force Microscope Rasterkraftmikroskop (Atomkraftmikroskop)


Das Atomkraftmikroskop wurde in 1981 von Heinrich Rohrer és Gerd K. Binnig entwickelt. Fünf Jahre später sie erhalten den Nobel-Preis.

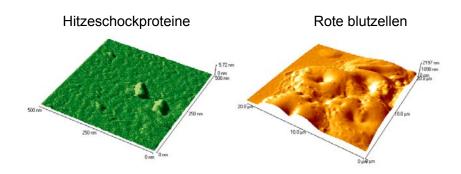
Rastertunnelmikroskop Messung des Tunnelstromes Rückkopplunselektronik Piezo-Kristall

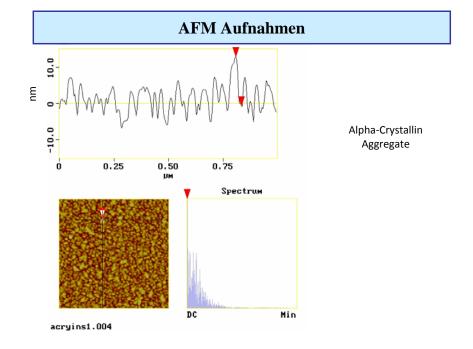
Der Tunnelstrom ist konstant gehalten mit der vertikalen Bewegung des Objektes.


Rasterkraftmikroskop (Atomkraftmikroskop) (Atomic Force Microscope-AFM)

Die Kraft zwischen der Nadel und dem Objekt

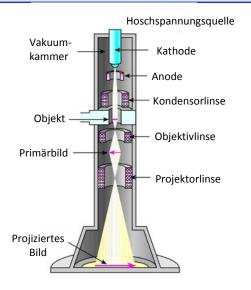
- •eine sehr spitze, nadelartige Sonde
- •Krümmungsradius bei der Spitze ≈ 10-20 nm => x-y Auflösung!

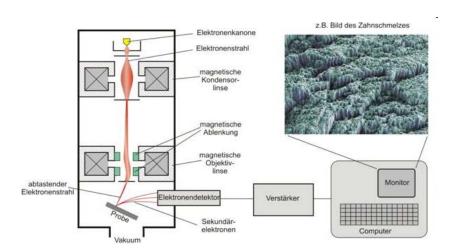



AFM Messmethoden

- Kontakt-Modus
- Der intermittierende Modus (engl.: *intermittent contact mode*, oder *tapping mode* genannt)

AFM Aufnahmen




ELEKTRONENMIKROSKOPE

Transmissionselektronenmikroskop Rasterelektronenmikroskop

Transmissionselektronenmikroskop

Rasterelektronenmikroskop

Auflösungsvermögen des Elektronenmikroskops Abbe'sches Prinzip und Materialwellen

Materialwelle: Zu einem Teilchen mit m Masse und v Geschwindigkeit, kann man eine Welle (Materienwelle)

zuordnen, die eine Wellenlänge von $\lambda = \frac{h}{mv}$ hat

Die Geschwindigkeit des Elektrons nach einer Beschleunigung mit U Spannung beträgt:

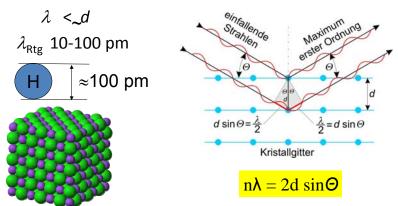
$$v = \sqrt{\frac{2eU}{m}}$$
 womit: $\lambda = \frac{h}{\sqrt{2emU}}$

Typisch kann λ 5 pm sein. Aber ω ist sehr klein! NA \approx 0,002

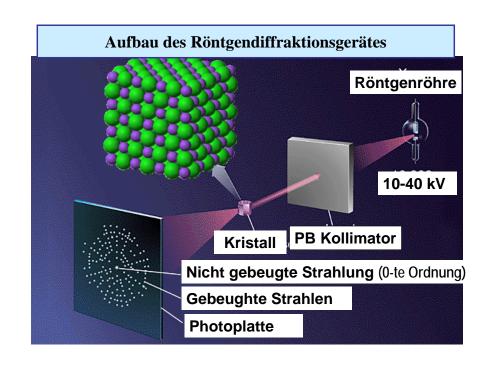
$$\delta = 0.61 \cdot \lambda / (n \cdot \sin \omega) \approx \text{ nm}$$

DIFFRAKTIONSMETHODE

Röntgendiffraktion

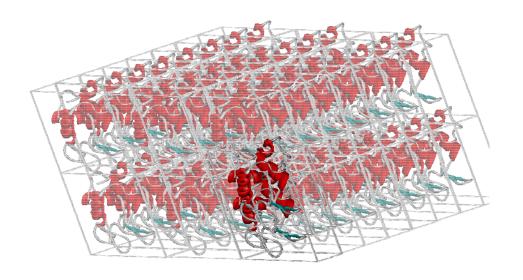

Anwendung der Röntgenstrahlung in Strukturanalyse der Materie.

Zur Erinnerung: Diffraktion des Lichtes

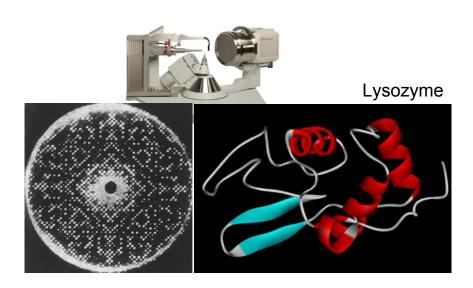

$$\sin \alpha_k = \frac{k\lambda}{d}$$

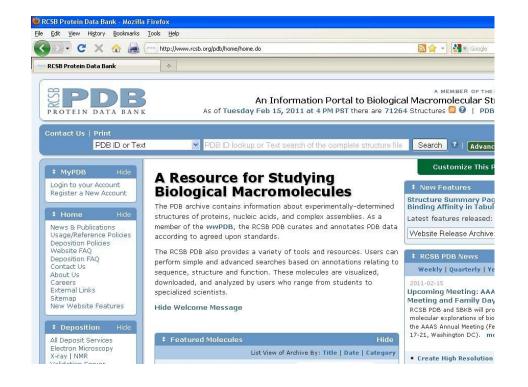
Röntgendiffraktion

Was für ein Gitter passt zur Röntgenstrahlung?



Atomgitter \rightarrow Kristall \rightarrow auch DNS o. Proteinkristall!





Eiweißkristalle

Bestimmung der Raumstruktur der Eiweiße

Elektronen und Neutronendiffraktion

λ: Materialwellen

Elektronen: Kleine Eindringstiefe: Oberflächen

Elektronen und Neutronen werden an den

Atomkernen gestreut.

(Rtg wird durch Elektronenwolken gestreut.)

Elektronen werden an den schwereren Kernen gestreut

Neutronen auch an den Protonen, =>

Neutronendiffraktion gut zur Strukturuntersuchung von wasserstoffhaltigem Material.