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OBJECTIVES OF
INVESTIGATION

¢ Understanding biomolecular structure

e and function (processes, states,
transitions, interactions, movement,
etc.)
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Radiative and non-radiative transitions!

1. FLUORESCENCE RESONANCE
ENERGY TRANSFER

In general:

*Occurs by non-radiative dipole-dipole
interaction between an excited donor and an
proper acceptor molecule under certain
conditions (spectral overlap and close distance).

* Fluorescence Resonance Energy Transfer (FRET):
if the participants of the transfer are
fluorophores.




FRET CONDITIONS OF FRET

* Acceptor (A) emission contributes to the relaxation

*Fluorescent donor and acceptor molecules.
of the excited donor (D) molecule.

*The distance (R) between donor and acceptor

molecules is 2-10 nm!
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DISTANCE DEPENDENCE OF FRET APPLICATIONS OF FRET
Forster-distance * Molecular ruler: distance measurement on the nm
//GDistance at which transfer (10°m) scale.
efficiency (E) is 0.5)

* High sensitivity!
R +® E * Applications:
e

— Measurement of interactions between molecules.

/ — Measurement of structural changes on molecules.
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fluorophores
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2. “RADIOSPECTROSCOPIES”:

REVOLUTIONIZED PHYSICS, CHEMISTRY, BIOLOGY AND MEDICINE

o Electronspin resonance (ESR, electron paramagnetic resonance - EPR)

. Nuclear magnetic resonance (NMR, MRI)

Protein molecular dynamics with NMR High-resolution anatomic MRI

EPR spectroscopy NMR spectroscopy

l
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Musculoskeletal MRT

ography Functional MRI (fMRI) Diffusion MRI (tractography)

MRI spectroscopy

MRI angi

ATOMIC, MOLECULAR SYSTEMS MAY
BEHAVE AS ELEMENTARY MAGNETS

. electromagnet Screen

Stern-Gerlach experiment D \
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magnetic dipoles:

Nuclear magnetic resonance, NMR
Nobel-prize, 1952

Isidor Rabi Felix Bloch Edward Mills Purcell
(1898-1988) (1905-1983) (1912-1997)

Magnetic resonance: resonance-type absorption of electromagnetic
energy by a sample placed in magnetic field.

SYSTEMS WITH NET SPIN:
ELEMENTARY MAGNETS

o Elementary particles (p, n, e) have spin (due to angular momentum).

® Based on the number of elementary particles and certain organizational principles within the system
(e.g., Pauli exclusion principle), net spin may arise.

® Nucleus: odd mass number - half nuclear spin ('H, 13C, 15N, “F, 3IP); even mass number, odd atomic
number - nuclear spin is whole number; even mass and atomic numbers - nuclear spin is zero.

e Electron: net electron spin only in molecules containing stable unpaired electrons (e.g., free radicals).

e Because of spin and charge, the system possesses magnetic momentum.

Nuclear magnetic momentum:
M, =yyL
YN = gyromagnetic ratio (ratio of magnetic momentum and angular

momentum)

L = nuclear spin (L = JF{.’ + I}E ), I=net spin quantum number.

Electron magnetic momentum:
M, =-gu, [S(S+1)

g = electron’s g-factor (dimensionless ratio that describes the relationship
Top between magnetic momemtum and gyromagnetic ratio)

3 = DO i unit of the electron’s magnetic dipole momentum
15 = Bohr magneton (unit of the electron’s magnetic dipol )
S = spin quantum number

In the absence of magnetic field:

orientation of elementary magnets is random

Paramagnetism: magnetism arises upon placing the
sample in external magnetic field (magnetic dipoles
become oriented).

In magnetic field:

elementary magnets energy
become oriented levels split
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NUCLEAR MAGNETIC RESONANCE:
SPIN PRECESSION

Precession or
Larmor frequency:
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NMR AND EPR
SPECTROSCOPY
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® NMR spectrum: intensity of absorbed
electromagnetic energy as a function of frequency. I ‘
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. of acetaldehyde
number of nuclei.

® Presence (and structure) of local electron cloud | |

‘ | ‘
affects the local magnetic field: frequency condition *" o }" /*r IS (| ¥
is shifted (“chemical shift”). It opens the possiblity of ]

chemical structure determination.

® Area under the “NMR-line” is proportional to the ’ ' NMR spectrum
[

CHO 8=456 Hz CHjy

EPR spectrum
of spin-labeled
cytochrome-C

® EPR spectrum: intensity of absorbed electromagnetic
energy as a function of magnetic field.

® Magnetic field is smaller, and frequency of EM
radiation is greater (microwave) than in NMR. J / (’Jl P

® Spin-labeling: attachment of a molecule containing | ¢ o
stable unpaired electron (radical).

@ Rotational dynamics in the time range of 10 - 102 s
may be measured.
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Magnetic field [G]

NET MAGNETIZATION
DUE TO SPIN ACCESS IN DIFFERENT ENERGY STATES

Low energy state
parallel in case of proton

Bo
{ Ratio of magnetic spins in high-
(antiparallel) and low-energy
(parallel) states:
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Boltzmann distribution

High energy state
antiparallel in case of proton

EXCITATION

USING RADIO FREQUENCY RADIATION

Resonance condition: Larmor frequency

Bo = magnetic field
M = net magnetization
By = irradiated radio frequency wave




SPIN-LATTICE RELAXATION

T1 OR LONGITUDINAL RELAXATION

T1 relaxation time:
depends on interaction
between elementary magnet (proton)
and its environment

SPIN-SPIN RELAXATION

T2 OR TRANSVERSE RELAXATION

Mxy “free induction decay”
(FID)

m

T2 relaxation time:
depends on interaction between
elementary magnets (protons)

MRI IS A NON-INVASIVE
“TOMOGRAPHIC” METHOD

MRI:

NET MAGNETIZATION OF THE HUMAN BODY IS GENERATED

Nobel-prize (2003)

Raymond V. Damadian
(1936-)
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Paul C. Lauterbur
(1929-)

& Peter Mansfield
Damadian’s patent figure “Indomitable” (1933-)




MRI IMAGING I:

SPATIAL RESOLUTION
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MRI IMAGING II:

COLOR DEPTH BASED ON RELAXATION TIMES
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SPATIAL ENCODING OF THE NMR SIGNAL IS BASED
ON
FREQUENCY CHANGES IN THE PRECESSION
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RF COIL
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Fourier
transform

Defining and addressing
voxels:

NUCLEAR MAGNETIC RESONANCE IMAGING:
SUMMARY

EXCITATION PULSE

Proton transmits a

T2-weighting

radiofrequency electromagnetic
wave (yellow) after excitation
by an RF pulse (red)

- Radiofrequency coil

Water molecule
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Processing | ¢
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Cross-section of an NMR scanner




MRI: MRI:

IMAGE MANIPULATION NON-INVASIVE ANGIOGRAPHY
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Spatial projection
(,volume rendering” )

MRI MOVIE FUNCTIONAL MRI (FMRI)

e = S HIGH TIME RESOLUTION IMAGES RECORDED

SYNCHRONOUSLY WITH PHYSIOLOGICAL PROCESSES
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Effect of light pulses on visual cortex
Opening and closing of aorta valve




SUPERPOSED MRI AND PET
SEQUENCE

PET activity: during eye movement
Volume rendering




