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Medical signal processing
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A signal is any kind of physical quantity that conveys/ 
transmits/stores information

e.g. (1)
electrical voltage, that can be 
measured on the surface of the 
skin/head as a result of the 
heart-/muscle-/brain activities 
(ECG/EMG/EEG) 

e.g. (2)
gamma photon detection 
in radioisotope 
diagnostics

(1) (2)
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Classification of signals

static – time-dependent
periodic – non-periodic
random – deterministic
pulsed – continuous
electric – non-electric
analog – digital

1mV/cm

25 mm/s
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in a very special role

electric signals

non-electric signals are 
transferred to electric ones

advantages of electric signals:
they are easy to transform, 
amplify, transmit 

digital signals

analog signals are transferred 
to digital ones

advantages of digital signals:
they are easy to store, the 
noise can be engineered and 
influence can be reduced
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quantity that compares the magnitudes of two signals:

Signal level or Bel-number (or Decibel-number): n 

(named after A. Bell)

unit of n : Bel (B) or decibel (dB)
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the relation between power and voltage:
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the characteristic unit: power (or intensity/energy),
the practical unit: (electric) voltage

signal level with voltages:
12 RR 
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empirical density function

spectrum, as a special density function
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body height, h (cm)

n: number 
of data

body height, h (cm)
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area under 
the curve: n

area under 
the curve: H
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all (usual) periodic functions can be expressed as a sum of 
sine (and cosine) functions from the fundamental frequency 
and the overtones

where f is the frequency

the sine function, which has the same frequency as the 
periodic function: 
fundamental frequency

2f, 3f, 4f, ... : overtones 

(line spectrum)

periodic function: 
there is a period, T

T

t

Fourier’s theorem for periodic functions (signals)
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T
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square pulse train
fundamental 
fr(equency)

fundamental fr.+
3rd overtone

fundamental fr.+
3rd overtone +
5th overtone

fundamental fr.+
3rd overtone +
5th overtone +
7th overtone
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fundamental fr.+
3rd overtone +
+ ... +
9th overtone
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Textbook, Figure VII.3.

Creating an 
ECG signal 
from sine 
functions
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flute clarinet

Measured spectra
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all (usual) functions can be expressed as a sum of sine 
(and cosine) functions 

spectrum: continuous

cf. emission 
spectra of 
incandescent
light sources

Fourier’theorem for non-periodic functions (signals)
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continuous spectrum

periodic
function

sine function

non-periodic 
function

a few periods

more periods

eg. pulsed ultrasound

spectrumfunction
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fsine
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Music in time-frequency representation
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Voiceprint

http://www.nrips.go.jp/org/fourth/info3/index-e.html

oscillogram 
(sound 
intensity 
vs. time)

time –
frequency 
representation

pronounced consonants and vowels
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t (s)

f si
ne

(H
z)

systole diastole

Heart beats in time-frequency representation
(+ oscillogram)

t (s)

U
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Frequency and amplitude ranges of biological signals

Practical manual, titel page of meas. 17
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Frequency dependent unit: Electronic amplifier

functionssame:and)2(
)1(

outin

outin

PP
PP 

1where),()()2()1( outin  PP AtPtPA

same: „fundamentalist“ requirement
similar: realistic requirement

,
in

out

P
PAP 

,
in

out

U
UAU 

power gain (amplification)

voltage gain (amplification)
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Uin Uout

R1

R2
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(frequency independent) voltage-divider

Uin

Uout

R1

R2

frequency dependent voltage-divider: with capacitor
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High-pass/low-cut filter

0),0(if out0  Uat very low frequencies:

at low frequencies: inout0,if URCU  

logf

n(dB)

↔ 6 dB/octave

because of the 
phase difference, 
the sum should be 
calculated as 
vectors

inout,if UU at high frequencies :

at high frequencies 
the capacitor is a 
shortcut
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Low-pass/high-cut filter
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discontinuity
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for (1): AP >1,

n=10 lg AP = 20 lg AU > 0 dB

for (2): frequency characteristics

f (logarithmic scale)

n(dB)

fl fu
transfer band (passband)

fl : lower frequency limit fu : upper frequency limit

nmax

nmax-3

ideal 
amplifier
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Amplifier with feedback
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Without appropriate 
perspective we may not 
recognize our real position.
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positiv feedback:
(a) AU=1, amplification: „infinite“ 

– sine wave oscillator
e.g.: ultrasound generator, 

heat theraphy
(b) AU 1, amplification: very big

– regenerative amplifier
e.g.: hearing, outer haircells

negativ feedback: „all“ amplifier

voltage gain with feedback

voltage gain without feedback

 > 0, positiv feedback (same phase), AU
*> AU (advantage)

< 0, negativ feedback (in opposite phase), AU
*< AU (disadv.)
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3 dBpositiv feedback

without feedback

negativ feedback

positiv feedback: transfer band – narrrower (big disadvantage)
higher gain (advantage)

negativ feedback: transfer band – broader (advantage)
less gain (small disadvantage)

logf
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transfer band
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analog signal: 
time- and 
value-contin. 

time-discrete 
value-contin. 

time-cont. 
value-discrete

digital signal: 
time- and 
value-discrete

Analog signal – digital signal
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Nyquist–Shannon 
sampling theorem:highest frequency component of the signal

fsampl = fmax, reconstructed signal is constant 

fsampl = 1.5 fmax, freq. of reconstructed signal is 
wrong

fsamp = 2 fmax, freq. of reconstructed signal is 
correct

e.g.: hifi, fmax = 20 kHz

fsampl = 44.1 kHz > 2*20 kHz

time-discrete: the value of the signal is not known for all moments in time

value discrete: the value of the signal can not be arbitrary
e.g.: hifi, 16 bit = 216 = 65 536 (CD standard)

24 bit = 224 = 16 777 216 (“best” audio card)

for complete reconstruction 
the minimum sampling frequency 
should be twice the frequency of 
the highest overtone of the signal
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Pulse processing

integral discrimination differential discrimination

to select only those pulses that are 
larger than a preset amplitude

to select only those pulses 
whose amplitudes lie within 
a preset window

in in

out out

discr

Textbook, Figure VII.32.
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Distribution functions and ID/DD ”spectra”
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ID-”spectrum”

DD-”spectrum”

”cumulative-
distribution-
function”
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M=N0-N

N

how many 
pulses are 
smaller than h?

cumulative-
distribution-
function

how many 
pulses are 
larger than h?
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Concentration of white blood cells

Coulter counter


