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Entropy

Free energy Free enthalphy,

Gibbs free energy

From non-equilibrium state to equilibrium state

Isolated system

Istherm system
Isotherm-isobar

system

equilibrium state



Thermodynamic

system

time independent time dependent

equilibrium steady state reactivenon-equilibrium

Transport processes Reaction kinetics

Driving force: moving to equilibrium

During spontaneous

process
∆S > 0 ∆F < 0 ∆G < 0

F=U-TS G=H-TS



PIONEERS OF TRANSPORT PROCESSES

CARRIER:

particles (atoms, molecules and ions),

(matter, energy, momentum)

electrons,(

energy, momentum)

fotons,.

(energy)

Lars Onsager)

(1903-1976)
Adolf Eugen Fick

(1829-1901)

Jean-Babtiste-JosephFourier

(1768-1830)

Sir Isac Newton 
(1642-1727)

transport phenomena concerns the exchange of mass, energy, and 

momentum between systems



Convective transfer:

Conductive transfer:

Transmitting transport

interface
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Basic quantities:
flux of extensive quantities

Driving force (intensive quantities

component:

energy:

momentum:

2 1mol m snj
− −  

2 1J U m sj − −  
1 2kg i m sj − −  

c∇
T∇
v∇

Flux Driving force

diffusion,

Heat conduction, 

rheology,

gradient∇ =

gradient of intensive

quantities.

x

y

gradient∇ =

Flux is the trnsfer rate per 

unit area perpendicular to

the direction of transfer



Flux is proportional to the gradient of intensive quantity
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Balance equation
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Graham’s idea
based on diffusion

Crystals : fast diffusion

Non-crystallyte colloid

materials

slow diffusion



c(x)

x

N(x)

x

-diffusional flux is proportioal to the gradient of concentration,

- flux is from higher concentration to lower concentration,

- D >0

c is not the real driving force!∇

Diffusion: Fick laws
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Fick’s 2nd law
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Free diffussion
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Concentration profile at steady state diffusion
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Concentration profile across a membrane at steady state
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Partition between membrane and solution
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membrane
solution solution

molecule complexing agant molecule-complex

Facilitated diffusion
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Active and passive transport



Robert Brown

(1773-1858)

Molecular theory of diffusion: Brownian motion

Fett droplett in milk. Dro size: 0.5 - 3 µm



Brownian motion
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Transport of internal energy

Heat

conduction
radiation Heat

convetion

Loss of metabolic heat?

lost radiation convective conductive evaporation breathingQ Q Q Q Q Q= + + + +

54-60 %

25 %

7 % 14 %



radiation

:ε emission
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Heat conduction: Fourier laws

material T/K

air 300 0.025

water 300 0.609

fett 298 0.21

blood 298 0.642

skin 310 0.442
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Staady state heat consuction between

layers
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Convective heat exchange (1)
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Heat exchange in the body (2)
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Heat lost by respiration (1)

volume: 500 ml

frequency: 12 – 14 / min 
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Heat lost by sweating (2)
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(Rheos logos = rheology)

Sir Isac Newton (1642-1727) 



Two types of flow

Turbulent flow
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⋅=
ρ
η

Laminar flow

e

vd
R

ρ
η

=

2100(?)eR <



Bernoulli 



RHEOLOGY
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shear: force acting on tangential direction and 

results in deformation

Fundamental quantities

pure shear shear during rotation

pressure

Shear force



Shear stress:
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When a force is applied to a volume of material then a displacement 

(deformation) occurs. If two plates (area, A), separated by fluid distance 

(separation height, H) apart, are moved (at velocity V by a force, F) 

relative to each other, Newton's law states that the shear stress (the 

force divided by area parallel to the force, F/A) is proportional to the 

shear strain rate (V/H). The proportionality constant is known as the 

(dynamic) viscosity (η).



Viscosity is a property of matters describing their internal 

resistance to flow and may be thought of as a measure of 

molecular friction. 

If the viscosity of a fluid is constant (neglecting temperature and 

pressure effects) it is said to be a Newtonian fluid. 

Non-Newtonian fluids exhibit a variation of viscosity depending on 

gradients within the flow field, the history that a fluid 'particle' 

experiences on its flow path, etc. 



Newtonian behaviour.

For ideal viscous materials, the rate of deformation is in proportion to the force 

applied. Deformation ceases when the applied force is removed. The apparent 

viscosity is constant with changing shear rates. This behaviour is typical of 

simple liquids such as water.

viscosity

Flow curve



Newtonian fluids

The viscosity of a Newtonian fluid is dependent only on 

temperature but not on shear rate and time. 

Examples:

•water 

•milk

•sugar solution

•mineral oil

viscosity



Dynamic viscosity is the commonly used form of viscosity, 

often abbreviated to just viscosity.

The units are either the SI units of pascal seconds (Pa s) 

The old smaller cgs physical unit for dynamic viscosity is poise after Jean Louis 

Marie Poiseuille (1797-1869): 1 poise = 100 centipoise = 1 g/cms = 0.1 Pa·s.

Fluidity is the reciprocal of the viscosity (= 1/η).

Kinematic viscosity is the dynamic viscosity divided by the 

density of the liquid (= η/ρ). The units are either the SI units of 

meter squared per second (m2 s-1) or the stoke (St).



Gases (at 0 °C): 

hydrogen 8.4 × 10-6 Pa·s 

air 17.4 × 10-6 Pa·s 

xenon 21.2 × 10-6 Pa·s 

Liquids (at 20 °C): 

ethyl alcohol 0.248 × 10-3 Pa·s 

acetone 0.326 × 10-3 Pa·s 

methanol 0.59 × 10-3 Pa·s 

benzene 0.64 × 10-3 Pa·s 

water1.025 × 10-3 Pa·s 



biofluid T/ °C viscosity

blood 37 4           (non Newtonian)

plasma 37 1,5

tear 37 0,73 – 0,97

air 20

sinovial fluid 20 (non Newtonian)

liquor 20 1,02

/mPa s⋅

21,8 10−⋅
23 10> ⋅



Dependence of viscosity on the temperature:
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Flow curve of Newtonian liquid
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Stokes law:
6 r xf a vη ηπ=

Höppler type viscometer

xv

ra



Hemorheology

White blood

cells

platelets

Red blood cells
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Parabolic velocity profile
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catheter

Modification of parabolic velocity profile in the presence of catheter

Turbulency occurs

at high speed1A 2A



Blood flow
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vessels diameter

cm

length

cm

number of 

branches

velocity.

cm/s

aorta 2.4 40 1 23

arteries 0.4 15 160 5

capillaries 0.0007 0,07 0,022

veins 0.5 15 200 2,5

101,2 10⋅



Pump, valves, 

manifold, 

functional “chips”, 

reagents

Nature Uses Microfluidics!



diffusion heatconduction rheology

TRANSFER: component energy momentum

DRIVING FORCE:

FLUX:

TIME

DEPENDENCE:
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SUMMARY

Fick Fourier Newton


