Medizinische Biophysik 2014. 04. 01.

Transportprozesse

I. Elektrischer Ladungstransport (el. Strom)

1. Grundbegriffe Elektrische Stromstärke, -dichte

2. Transportgesetz = ohmsches Gesetz

3. Anwendungen Messung von Biopotenzialen (EKG, ...)

Messung der elektrischen Leitfähigkeit von Geweben (EIT,)

II. Volumentransport (Strömungen)

1. Grundbegriffe Strömungsarten: laminare, turbulente

Volumenstromstärke, -dichte

Anwendung: Blutströmung

Flüssigkeit: ideale, reelle

ssigkeit: ideale, reelle Volumenstromstärke, Strömungsgeschwindigkeit,

Messmethoden

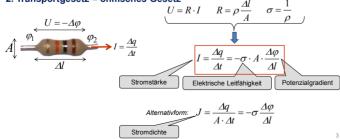
2. Kontinuitätsgleichung Anwendung: Blutkreislauf

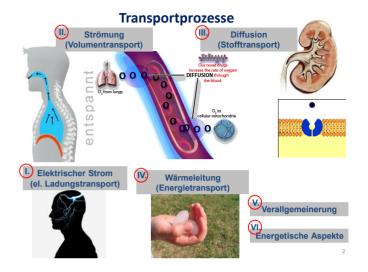
3. Strömung von idealen Flüssigkeiten
Geschwindigkeitsprofil

Bernoullische Gleichung

4. Strömung von reellen Flüssigkeiten

Newtonsches Reibungsgesetz


Viskosität Anwendung: Viskosität des Blutes

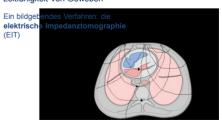

I. Elektrischer Ladungstransport (el. Strom)

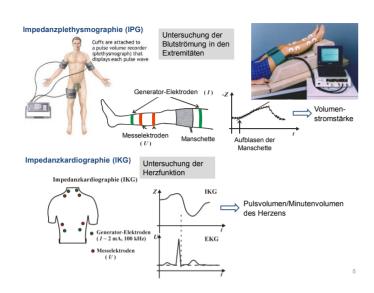
1. Grundbegriffe

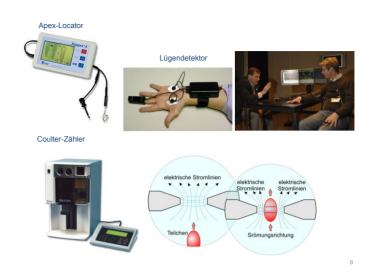
- Elektrische Stromstärke (*I*): $I = \frac{\Delta q}{\Delta t}$ (A
- Elektrische Stromdichte (*J*): $J = \frac{\Delta q}{A \cdot \Delta t}$ $\left(\frac{A}{m^2}\right)$
- stationärer Strom: zeitlich konstant

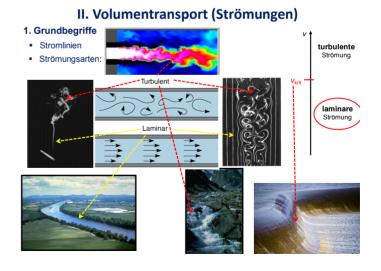
2. Transportgesetz = ohmsches Gesetz

3. Anwendungen • Diagnostik

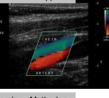

> Messung von Biopotenzialen (EKG, EEG, ...) (ausführlicher siehe später!)

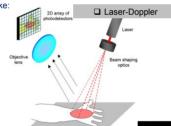



> Messung der elektrischen Leitfähigkeit von Geweben

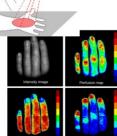

Gewebe	σ (mS/m)
Blut	700
graue Hirnmasse	300
weiße Hirnmasse	150
Haut	100
Fett	40
Knochen	10

- Volumenstromstärke (*I*): $I = \frac{\Delta V}{\Delta t}$
- Volumenstromdichte (*J*): $J = \frac{\Delta V}{A \cdot \Delta t}$

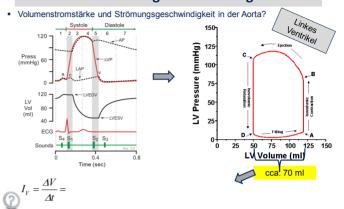


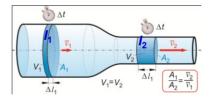


Messmethoden der Volumenstromstärke: □ Ultraschall-Doppler



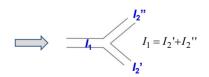
☐ Impedanz-Methoden


□ Dilutionsmethoden


- Zugabe des Markierstoffes ΔV Fluoreszenzfarbstoffe
- Radioisotope
- · kalte phys. Salzlösung,
- Markierstoffes in der Probe: $c = \frac{\Delta v}{\Delta V} = \frac{\Delta v}{I \cdot \Delta t} \implies I = \frac{\Delta v}{c \cdot \Delta t}$

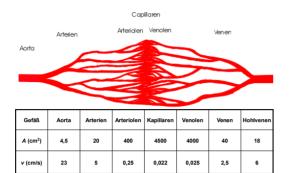
Anwendung: Blutströmung

2. Kontinuitätsgleichung


$$I_1 = I_2$$

$$A_1 \cdot \overline{v_1} = A_2 \cdot \overline{v_2}$$

Weitere Voraussetzung:


• starres Rohr oder stationäre Strömung*

* stationäre Strömung: in der Zeit sich nicht ärndernde Strömung

(siehe krichhoffsche Knotenregel!)

Kontinuitätsgleichung im Blutkreislauf

13

Anwendungen der bernoullischen Gleichung

Flow

Pressure

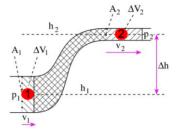
Differential

Acta with large

abdominal aneurysm

15

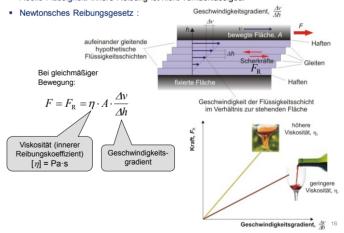
3. Strömung von idealen Flüssigkeiten


- Ideale Flüssigkeit: keine innere Reibung
- Geschwindigkeitsprofil:

Daniel Bernoull 1700-1782 Mathematiker Physiker Anatom

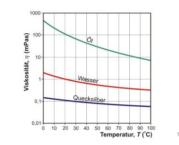
Bernoullische Gleichung:

Energieerhaltung

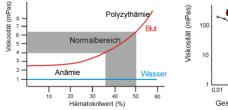

$$p + \frac{1}{2}\rho \cdot v^2 + \rho \cdot g \cdot h = \text{konstant}$$

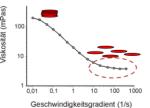
Weitere Voraussetzungen:

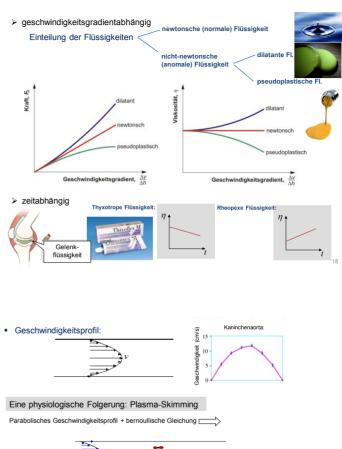
- starres Rohr oder stationäre Strömung
- ideale Flüssigkeit

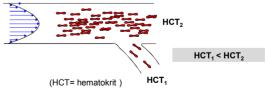

4. Strömung von reellen Flüssigkeiten

• Reelle Flüssigkeit: innere Reibung ist nicht vernachlässigbar


innerer Zylinder


Messflüssigkeit


_rotierender Zylinder


Viskosität des Blutes

- bei Körpertemperatur und bei physiologischen Strömungverhältnissen: 2-10 mPa·s
- hängt von der Temperatur ab (wie bei jeder Flüssigkeit)
- hängt sehr stark von dem Hämatokritwert des Blutes ab
- hängt vom Geschwindigkeitsgradienten ab, undzwar pseudoplastisch
- hängt vom Blutgefäßdurchmesser ab, in kleinere Gefäßen (< 1 mm) ist die Viskosität kleiner (Fahraeus-Lindqvist-Effekt)

Hausaufgaben: ■ Neue Aufgabensammlung 5. Teil 3.1-4