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It is influenced by:
- diffusion coefficient within the membrane
- thickness of the membrane

- partition coefficient
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Diffusion of ions
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Equivalent circuit model

extracellular space
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Capacitive property of the membrane
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Alteration of resting membrane
potential

2. “active” electric properties of the membrane in
excited state
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Hodgkin-Katz hypothesis of action potential
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States of voltage-gated sodium channels

Channel closed _ GChannel opan [+ ]
L]

I

at depolarization threshold

Relative refractory period

Membrane potential (mV)

— Action potential

- Na*

lon permeability

2
Time (msec)

Local current flow

Nat entry depolarizes the

membrane, which o

additional Na+ channels.

pens

B o o S O o R S

Positive charge flows into
adjacent sections of the
axon by local current flow.

\J/




(¢) The refractory period prevents

backward movement of the action |
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The trigger zone is in its refractory
period. K* gates have opened and
the Nat inactivation gates have
closed. Loss of K* from the
cytoplasm repolarizes the membrane.

Refractory region |

| Inactive region

bk kbt

In the distal parts of the axon,
| local current flow from the
@ active region causes new sections
~ of the membrane to depolarize.

Conduction velocity [m/s]

140
120
100
80
60
40
20

10 12 14 16 18 20
Diameter [um]




The diameter of frog axons and the presence or absence of

myelination control the conduction velocity.

Node of Ranvier Myelin sheath
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- Fiber type Average axon diameter (um) Conduction velocity (m-s™1)

Myelinated fibers
185 42
14.0 25
Ay 11.0 17
Approximately 3.0 42
Unmyelinated fibers
C 25

Damage of Myelin sheath
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release from the same sites over time
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Patch-Clamp technique
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Inside-out recording

~

7

~~—

The internal face of the lipid
bi-layer faces the bath solution

Patch-pipette -

4

4 —
The external face of the lipid
bi-layer faces the bath solution

Outside-out
recording

Single-channel I/V plots are used to determine the
conductance of an ion channel
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Sodium action potentials synchronize [Ca2+] transients in all dendritic compartments of
mitral cells in the olfactory bulb of anesthetized rats.
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