Medizinische Biophysik

3. Vorlesung

Struktur der Materie

II. Aggregatzustände: feste Körper, Flüssigkristalle

- 5. Fester Aggregatzustand amorphe Stoffe
- a) Makroskopische Beschreibung:
- b) Mikroskopische Beschreibung:
- 6. Flüssigkristalle
- a) Makroskopische Beschreibung:
- b) Mikroskopische Beschreibung:
- c) Anwendungen von Flüssigkristallen:
- d) Lyotrope Flüssigkristalle:
- 7. Phase, Phasendiagramm, Phasenübergänge

III. Materialfamilien

- 1 Metalle
- 2. Keramiken 3. Polymere
- 4. Komposite

IV. Eigenschaften der Materialien

- 1. Thermische Eigenschaften
- a) Erwärmung/Abkühlung
- b) Wärmeausdehnung

2. Einige mechanischen Eigenschaften

- a) Deformationstypen:
- b) Belastungsdiagramm:
- c) Dehnung (Zug):
- d) Hookesches Gesetz und die Steifigkeit :
- e) Festigkeit:
- f) Zähigkeit:
- 3. Elektrische Eigenschaften

6. Flüssigkristalle - Mesophase zw. dem festen und flüssigen Zustand 1883 Reinitzer Cholesterinbenzoat smektisch a) Makroskopische Beschreibung: - Eigenvolumen aber keine Eigenform nematisch Optische Anisotropie - Eigenschaften sind empfindlich gegen schwache äußere Einwirkungen b) Mikroskopische Beschreibung: - Teilweise geordnete Strukturen (Orientierung, Schichten) cholesterisch

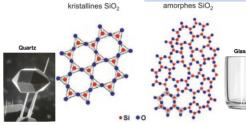
5. Fester Aggregatzustand - amorphe Stoffe

a) Makroskopische Beschreibung:

- Eigenvolumen aber keine Eigenform
- Isotrop
- sehr hohe Viskosität

b) Mikroskopische Beschreibung:

- Nahordnung
- Schwache Bewegungen



= gefrorene unterkühlte Flüssigkeiten, Gläser!

Bitumen.

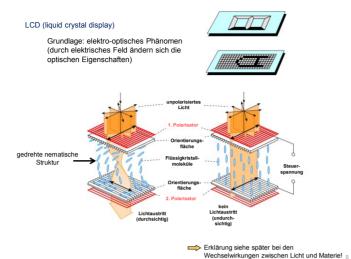
Z.B. Glas, Harz, Wachs,

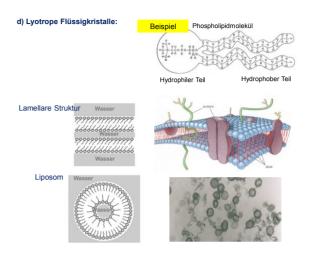
amorphes SiO₂

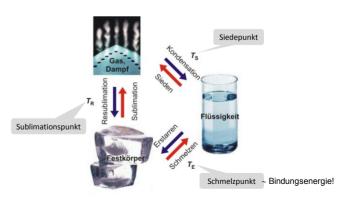
c) Anwendungen von Flüssigkristallen:

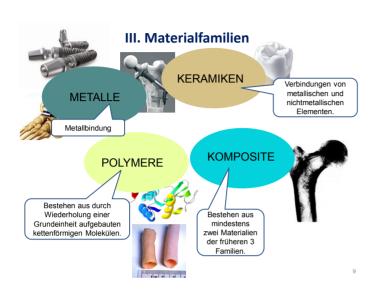
Kontaktthermographie/Plattenthermographie

Grundlage: thermo-optisches Phänomen (bei Temperaturänderungen ändern sich die optischen Eigenschaften)

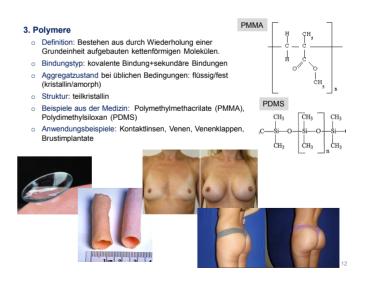






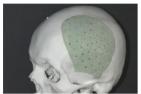

7. Phase, Phasendiagramm, Phasenübergänge Z.B. SiO₂ Aggregatzustände bei H₂O: gasförmig 870°C ₹ 1470°C ₹ 1713°C polymorphe Modifikationen von SiO₂ Phasen • Phase: physikalisch und chemisch homogener Stoffbereich • Stabile Phase: unter den gegebenen Umständen die energetisch günstigste Phase Eis • Phasendiagramm: Darstellung der stabilen Phasen bei verschiedenen Bedingungen (Druck - p, Temperatur - T, Konzentration - c, ...) 0,006 Tripelpunkt Temperatur, T (°C) 7

 Phasenübergang: Übergang aus der unter den neuen Umständen schon instabilen Phase in die stabile Phase



2

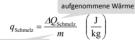
1. Metalle Definition: Metallbindung Bindungstyp: Metallbindung Aggregatzustand bei üblichen Bedingungen: fest (kristallin) mit einigen Ausnahmen (z.B.Hg) Struktur: Polykristalle, aber Einkristalle und amorphe Metalle (Metallgläser) auch möglich Beispiele aus der Medizin: Titan, Ni-Ti-Legierungen Anwendungsbeispiele: Implantate, Zahnkrone, Brücke



4. Komposite (Verbundwerkstoffe)

- Definition: Bestehen aus mindestens zwei Materialien der früheren 3 Familien.
- o Bindungstyp: -
- Aggregatzustand bei üblichen Bedingungen: fest (kristallin/amorph)
- o Struktur: -
- Beispiele aus der Medizin: mit Keramiken verstärkte Polymere
- o Anwendungsbeispiele: Prothesen, Zahnfüllung

Dispersionsphase



spezifische Phasenübergangswärme (q):

- spezifische Schmelzwärme (q_{Schmelz}):

Masse des Körpers

- spezifische Verdampfungswärme (q_{Verdampfung}):

$$q_{\text{Verdampfung}} = \frac{\Delta Q_{\text{Verdampfung}}}{m} \quad \left(\frac{J}{\text{kg}}\right)$$

Stoff	q (kJ/kg)	
Eis	334,4	
Wasser (100°C, 101 kPa)	2257	
Wasser (30°C, 101 kPa)	2400	
Gold	67	
Aluminium	396,1	
NaCl	517,1	
Silizium	1656	

~ Bindungsenergie!

IV. Eigenschaften der Materialien

1. Thermische Eigenschaften

a) Erwärmung/Abkühlung

Wasserstoffbrückenbindungen	Stoff	c (J/(kg·K))	
20 9 9 / Coloradinating	Wasser	4190	hohe Temperatur-
2 2 0 00 00 00 00	Muskelgewebe	3760	stabilisierungs-
3 3 3 00 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Fettgewebe	3000	fähigkeit
	Körpergewebe (durchschnittlich)	3500	
& P & & & &	Gold	126	
	Porzellan	1100	
Wassermoleküle	Glas	800	

b) Wärmeausdehnung

Längenausdehnung:

 $\frac{\Delta J}{I} = \alpha \, \Delta T$ ursprüngliche Länge (Längenausdehnungskoeffizient (Längenausdehnungskoeffizient) (1/K)

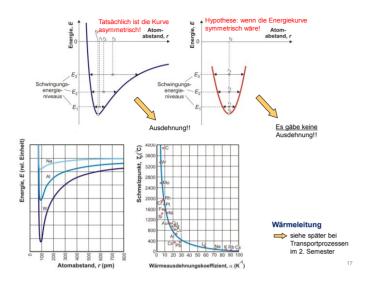
Stoff	α(10 ⁻⁶ 1/K)		
Knochen	≈ 25		
Zahnschmelz	≈ 11,4		
Porzellan	4-16		
Glas	≈ 8		
Zirkon	≈ 11		
Titan	8,6		
Gold	14,2		
Amalgam	≈ 25		
PMMA	70-81		
Wachs	300-500		

~ 1/Bindungsenergie!

Volumenausdehnung:

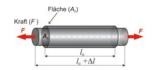
Volumenänderung Temperaturänderung

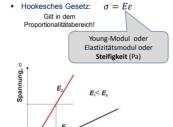
 $\frac{\Delta V}{V} = \beta \Delta T$


 ΔT

ursprüngliches **räumlicher Wärmeausdehnungskoeffizient**Volumen (Volumenausdehnungskoeffizient) (1/K)

Für die meisten Stoffe gilt annähernd: $\beta pprox 3 lpha$

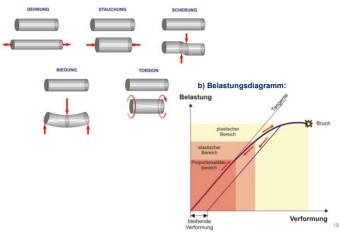

innere Spannungen



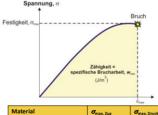
c) Dehnung (Zug):

- Zugspannung (σ): $\sigma = \frac{F}{A_0}$ $\left(\frac{N}{m^2} = Pa\right)$
- Dehnung (ε): $\varepsilon = \frac{\Delta t}{l_0}$

d) Hookesches Gesetz und die Steifigkeit (E):

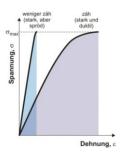

Dehnung, ε

Material	E (GPa)
Kollagen	0,3-2,5
Knochen	10-15
Dentin	10-15
Zahnschmelz	≈ 100
Silikongummi	≈ 0,0003
PMMA (Polymethylmethacrylat)	2,4-3,8
Porzellan	60-110
Gold	79
Titan	110
Zirkon (mit Yttrium stabilisiert)	200
Stahl	200-230
Aluminiumoxid	350-410

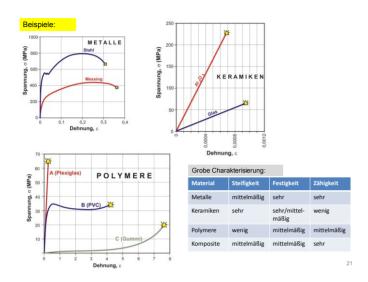

~ Bindungsenergie!

2. Einige mechanischen Eigenschaften

a) Deformationstypen:



e) Festigkeit (σ_{max}): Spannung, σ



Material	σ _{max, Zug} (MPa)	σ _{max, Druck} (MPa)
Zahnschmelz	≈ 10	≈ 400
Dentin	≈ 110	≈ 300
Keramiken	5-400	20-5000
Porzellan	≈ 25	≈ 300
PMMA	≈ 50	≈ 80
(Polymethylmethacrylat)		
Zirkoniumdioxid	≈ 250	≈ 2500
Pd-Ag Legierungen	400-700	
Co-Cr Legierungen	600-800	
Ti Legierungen	900-1100	
kohlenstofffaserverstärkte	≈ 1700	
s (61%) Epoxid		

f) Zähigkeit (w_{max}):

20

Hausaufgaben: Neue Aufgabensammlung
1.54-57, 59, 61-63, 65-72

3. Elektrische Eigenschaften Elektrische Leitfähigkeit: Der Kehrwert des spezifischen σ = Spezifischer Widerstand Widerstandes Stoff σ(S/m) Stoff ρ (Ω·cm) Silber 6.8-107 Blut 150 Gold 4.3·10⁷ Leiter graue Hirnmasse 300 Platin 0.94-107 weiße Hirnmasse 700 2,2 Germanium Haut 1000 Halbleiter 4.10-4 Silizium Fett 2500 ≈10⁻¹⁰ Zirkon Knochen 10000 Porzellan ≈10⁻¹¹ Glas ≈10-13 Isolator Die Unterschiede werden bei den elektrischen Methoden wie РММА ≈10⁻¹² z. B. Impedanztomographie Polyethylene ≈10⁻¹⁶ ausgenutzt. Metalle sind Leiter. Keramiken und Polymere

sind Isolatoren.

Optische Eigenschaften siehe später! 22