
In this lecture we are discussing on probability. 

First I will show you two experiments to feel the strange word of probabilities. 

Then we define the probability as a quantity based on the law of large numbers. 

Thereafter we discuss on the probability of events (notation, and/or relation between

events, mutually exclusive and independent events,Kolmogorov axioms and conditional

probability).

After that we discuss on how to estimate/calculate probabilities using probability

calculus and special theoretical distributions. We define the expected value and the

theoretical variance. We describe the uniform, binomial, poisson, Gaussian, lognormal, 

exponential distributions with examples.

At the end I give you two example for how our mind works and how it have to be....
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Based on some opinion the beginnings of probability calculus was the Saint Petersburg

paradox. It was a theoretical game publicated in 1715. A theoretical person – Peter –

plays the game. The rules are the next.

1. The pot starts at 2 dollars and it is doubled every time a head appears.

2. The first time a tail appears, the game ends and Peter wins whatever is in the pot:

• Peter wins $2 if a tail appears on the first toss

• Peter wins $4 if a head appears on the first toss and a tail on the 

second

• 8$ if a head appears on the first two tosses and a tail on the third

• and so on

The question appers what would be a fair price for taking part in this game? It would be 

the expected prize (that Peter win) for one game.
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What will be the prize Peter win?

In the half of the cases the first result is tail – so Peter win ½*2 dollars in average. 

In the half of the cases when the first toss is head (that is in the half of the cases) the

second is tail – so we get ½*1/2*4 dollars in average and so on.

We could calculate the expected („average”, or „mean”) prize in one single game based

on the equation in the slide. Based on that the expected price is infinite in one game.

But in practice we realize the sum in one single game is never infinite! For example: 

Buffon (a famous mathematician) made 2048 tosses and won $9.82 on average (the

mean of the prizes). With 1 million tossing we get $10.94 on average.
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We could experience the mean of the prize won in one single game is increasing and 

tends to the theoretical infinite if we play more and more games.
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In this other experiment we are modelling an epidemic investigation. We have a quick

test for a disease. White coloured result indicate healthy, green one indicate ill people. 

We want to figure out whether there is an epidemic in a certain area based on the

proportion of ill people. 

What we know is:

in a non-affected (healthy) area there is 1 ill out of 10 and 

in the affected area there is 9 ill out of 10 people. 

Now we are begining to test the people in an unknown area where we would like to

know wheather there is a disease – and may be an epidemic. 
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We have limited time and resources so we couldn’t test every people, but we have to

make a decision.

We found that increasing the number of measurements increase the „certanity”.
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In an other experiment we roll a die 50 times and we count the relative frequency of 

rolling 6. We repeat this experiment 3 times. We expirience that the relative frequencies

(frequency of favorable/all measurement) tend to a certain value independetly from the 

actual series of experiments if we increase the number of the rolls.
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Law of large numbers (on relative frequencies): the relative frequency in an infinite 

sequence tends to a certain value.

We assign that certain value to an event: 1/6 to rolling 6 with a die. 

This value is called probability of an event.

The relative frequency is equal to the probability if the sequence is infinite.

This is an empirical law – can not be proven by logical sequence.
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Now we describe some properties of events’ propability. First about the notation. 

(Eaxamples are given in parentheses with italian format)

An event is notated with a capital letter – e.g. A (the patient has fever). Its probability

symbolized as P(A). Example P(A) = the probability that the patient has fever.

Probability that event A or event B occur (the probability that the patient has a fever or a 

headache) could be notated in three way: P(AorB), P(A+B), P(AUB).  The last one refer to

a set definition: the Union – abbreviated U – is all value that belongs to at least one of 

the sets. On Venn-diagram we can plot it as it shown in the slide.

9



The probability that both events A and B occur could be notated as P(AandB), P(A*B), 

P(AB), P(A∩B).  (The robability that the patient has fever and headache.) The ∩ is the

symbol in set theory for the intersection. The Venn-diagram for intersection is shown in

the slide.
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We have to highlight two event relations.

First the mutually exclusive events that mean two events (A,B) cannot occur at the same

time. (The patient is both pregnant and male.) It means the intesection of this two event

is an empty set. On Venn-diagram we see that the two set has no intersection.

In the case of indepent events the occurrence of an event doesn’t affect the occurence

of the second one. (Our first patient is male and the second one is female.)
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Before we go on we have to define the conditional probability. Conditional probability is 

the probability of an event given an other event has occured. (The probability that a 

patient suffering from a viral infection has actually flu – and not some other type of viral 

infection.) The notation for the conditional probability is P(A|B).
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To describe the probability of events we have axioms. Now we show the Kolmogorov

axioms. (In a simplified way.)

1. The probability of an event is between 0 and 1.

2. The probability of a sure event (the patient will die sooner or later – we know that

life is a sexually transmitted lethal disease☺) is 1. The probability of an impossible

event is 0 (I’m 310 cm tall).

3. The probability of A or B events occur if A and B are mutually exclusive events is the

sum of the probabilty of A and the probability of B events. (The probability that

being pregnant or male is the probability that being pregnant + the probability that

being male.)

A theorem based on the axioms:

+4 The probability of A and B events occur if A and B are independent events is the

multiplication of the probability of A and the probability of B.

(Probability that our first patient is male and the second one is female is the probability

that our first patient is male * the probability that our second patient is female.)

These mentioned statements are true from other way round. For example if

P(A)*(P(B)=P(AandB) then A and B are independent events.
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There is an other important calculation that you have to know on conditional events. I 

try to explain it based on an example.

The probability that a patient suffering from a viral infection has actually flu is 14% 

=P(A|B) - that is the conditional probability

The probability that a patient coming to our office has viral infection is 8% =P(B) – that is 

the probability of the condition.

The probability of occurrence of flu infections at our office – that is the probability of our

event in the given sample.

P(A) = 0,14 * 0,08 = 0,0112 = 1,12%
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There is an other „probability like” parameter in probability calculus that used very

often. This parameter is the odds. Calculated as a ratio of the probability that a given 

event occurs and the probability that it does not occur. (The meaning is how much larger

is the probability of an evet occuring than of not occuring.)

The logit is a rarely used parameter. It is the natural logarithm of odds.

The connection between the value of the logit, odds and probability is shown in the

slide. 

We can notice for example that the probability is between 0 and 1. The odds between 0 

and infinite. The odds is over 1 if the probability is over 0.5. The logit is negative if the

probability is smaller than 0.5.
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Probability calculation and statistics are based on the permutations, variations and 

combinations. 
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An example why and how we use the probability calculus.

During last year's flu epidemic 402 out of the total 2989 patients who turned up at a 

doctor's office required vaccination. Based on last year's data what is the probability 

that 4 vaccines will be sufficient (exactly, i.e. no vaccines left) in a certain day, if we are 

expecting a total number of 25 patients?

For answering the question we use the Bernoulli distribution’s (see later) equation. I 

show this equation to highlight that Bernoulli distribution is based on probability

calculus.

To answer question like that, our main questions will be: How to calculate? How do we

know the equations? Which equation, table we should use?

17



For answering the questions about probabilities we can use theoretical distributions. 

Theoretical distributions shows the probability for a given value. In a very rare cases we

know the probabilities for every outcomes based on a large number of experiments. 

But usually we can calculate or more often estimate the probabilities based on a few

value (parameters) using special distributions. So the question is what are these

parameters and which special distribution I should use for the given problem.
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Theoretical distributions have similar parameters as mentioned in descriptive statistics. 

There is a parameter that describe the center of the distribution and an other one that

describe the width of the distribution.

The first one called expected value (abbreviated with E), the second is the theoretical

variance (Var). In the equation x is the given value and p is the probability of that value. 

The expected value calculated slightly differently for continous and discrete variables. As

I showed in the lecture the expected value is equal with the mean of the population. For

countinous variable we use infinite small binwidth for summarisation – that is the

integral (ʃ).
This two indicator (the expected value and the variance) defines exactly the distribution

that means knowing this indicators we could calculate the probability for all value.
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Let’s see first the uniform distribution. 

We have uniform distribution for example if we rolling a dice or we talk on the ideal

workload or temperature distribution in an empty space.

For example using the uniform distribution we can calculate the probability of rolling 4 

with a die.

The formula of the expected value and the variance is available in the formula collection. 

Here a and b are the smallest and largest outcomes. In the case of a six sided die the

expected value is 0.5*(1+6)=3.5, and the variance is 1/12*(6-1)^2≈2.08.
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The binomial (or Bernoulli) distribution is used in general if a phenomenon is repeated n 

times it occurs x times.

An exmple was the vaccination I mentioned before: During last year's flu epidemic 402 

out of the total 2989 patients who turned up at a doctor's office required vaccination. 

Based on last year's data what is the probability that 4 vaccines will be sufficient 

(exactly, i.e. no vaccines left) in a certain day, if we are expecting a total number of 25 

patients?

For the calculation we need the expected value and the variance – or the parameters

that describe it. E=n*p and Var=n*p*(1-p) so we need n (in our case the expected

number of paient: 25) and p (we could estimate it using last years data: p=402/2989). 

Based on this values we can calculate the probability of k (in our case 4) using the

equation of the distribution.

If the probability of occurance (p) is small the binomial distribution tends to a Poisson 

distribution. 

If repetition (n) is large and the probability is close to 0.5 it tends to Gaussian 

distribution.
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A geometric distribution is a special Binomial distribution. In this case we make

independent sequence of Bernoulli trials.

A medical example: What is the probability that we can examine the first patient

without calling the nurse to help us? Or the probability that we couldn’t examine the xth

people without any help before. In this graph I show the probability of this situation –

this is a kind of a cumulative frequency distribution (we cumulate the probability that

we need help in the first patient + we don’t need help in the first, but in the second we

need +we don’t need help in the first two, only in the third patient....)

In the play of St. Petersburg paradox the prize of a single game follow geometric

distribution too (see 2nd slide in this lecture).
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The Poisson distribution has a special attribution: the expected value and the variance

are the same – so we need only 1 parameter to describe this distribution.

For example based on this distribution we can calculate the probability that we have 3

birth during our night shift. Other examples that follows Poisson distribution are:

Number of white blood cells in the field of view, number of decayed atoms in a

radioactive substance during a given time interval.

In general: number of elements in a given time interval or volume..., if the probability of

the occurrence is small.

The expected value (λ) derived from n*p (number of „repetition” * probability).
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The normal or Gaussian distribution is the most common in medical practice.

In this slide I ploted both the relative distribution and cumulative frequency functions, 

because this is the most important distribution for us. As you see against the other

mentioned distribution this is symmetric one.

The most of the variables in medical practice follows normal (Gaussian) distribution –

eg. enzime levels, height, body mass index (BMI), blood pressures...

Why?
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The reason of why we have normal distribution in most of the variables in medical

practice described by the central limit theorem. It says that summarizing large number 

of independent variables resulted a normally distributed variable. In medical practice

most of the measure values affected by several factor: gens from father, gens from

mother, nutrition, way of life...
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A common distribution in medical practice is the lognormal distribution. For example

the body parameters in childhood, survival time of a cancer. 

In general if the values of the variable are close to 0 and couldn’t be negative instead of 

a normal distribution we get a lognormal distribution.
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The exponential distribution is well know in biophysics and has some appearance in

medical practice too. I give you two example: anaesthetic equipment operating time

(before the first error) and the lifetime of the individual atoms in the course of

radioactive decay.
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Perhaps you think based on the description that Tomi is a librarian more likely but if you

think it over the frequency of male librarians and male blue-collar worker you should

realize that Tomi is probably a blue-collar worker and not a librarian.
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I’d like to highlight two statement: d and f. I hope everybody found out that co-

occurrence is less probable than occurrence of a given event. The intersection of sets is 

always equal or smaller than the sets. So it is less probable that Linda is a bank teller and 

active feminist than she is a bank teller. 
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The following questions may be answered using lecture material, consultation with practice teacher, or 

your own investigation (on the library or the internet). These test questions are examples for multiple 

choice items that may occur in the midterm and exam tests.
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