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INTERACTION OF LIGHT GENERAL ABSORPTION
WITH MATTER (ATTENUATION) LAW
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PARAMETERS AND MEASUREMENT
OF ABSORPTION SOURCE OF EMISSION

Absorbance (A) A = lg_o = lg e ‘u ‘X Dimensionless number 1. Thermal (black bOdy) radiation 2. Luminescence
Synonyms: extinction, optical density (OD) . . X . X
: : Mechanism: thermal motion of atoms, molecules Mechanism: emission of excited-state energy
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ABSORPTION AND EMISSION DEPEND
ON THE ATOMIC STRUCTURE

Bohr’s model

ne3 d E(eV)
states

s (1=0) p(1=1)

n_,Q
-~ Q PP

My 104 m=0 m=-1 m=0 m=I

R

\
higher energy
(“excited

bound states

1 1
Y
name symbol orbital meaning range of values value example
principal quantum number n shell 1<n n=1,223..
, forn = 3:
azimuthal quantum number (angular momentum) ¢ subshell (0<€<n- 1)[ 0.1.2 (s ,d)
: S : for = 2
magnetic quantum number, (projection of angular momentum) 712¢ energy shift —£< my <:H =] 1.0.1.2
= = my=—-2,-1,0,1,
spin projection quantum number Ms  |spin — % % for an electron, either: — % %

® Principal quantum number: distance of electron from nucleus (energy)

® Azimuthal (angular or orbital) quantum number: shape of atomic orbital
® Magnetic quantum number: orientation of orbital in magnetic field

® Spin quantum number: intrinsic angular momentum of the electron

ABSORTION AND EMISSION
BY AN ATOM
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APPLICATION OF EMISSION
SECTROSCOPY

Flame photometry

Clinical practice: determination of
serum ions (Na*, K*)

Qualitative and quantitative analysis of alkali metals

STATE OF A MOLECULE IS AFFECTED
BY ITS MOTIONAL MODES

Molecule: atoms connected by

chemical bonds “
Simplest case: diatomic molecule

(e.g., hydrogen molecule)

Molecules vibrate and rotate!

Vibration: periodic motion along the axis of the covalent bond
Rotation: periodic motion around the axis of the covalent bond

Examples of vibrational
motion in the triatomic

methylene group (-CHa-):
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REPRESENTATION OF
ENERGY OF A MOLECULE ENERGY STATES

Born-Oppenheimer approximation: Jabtonski diagram:

PE !.
oA illustrates the electronic states of a
— molecule and the transitions between
n  Ewu=E +E+E

them (with arrows)

Alexander Jabtonski
(1898-1980)

Max Born J. Robert Oppenheimer
(1882-1970) (1904-1967)

Iportant notions: S, }Vibralimal levels (light lines)
Types of energy states are independent (not coupled)

Energy states are non-continuous, but discrete
Transition between states involves packets (quanta) of energy (
Scales of transition energies between different states are different:
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) |
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~3x1019] (~2eV) > ~3x1021] > ~3x1023]J
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MOLECULES HAVE BAND

SPIN STATES ABSORPTION SPECTRA

Pauli’s exclusion principle:
e Each quantum state can be occupied by a single electron.

) e Within an atom there cannot be two electrons for which all four .
Wolfgang Pauli 3 : b tentStont] ) General attenuation law:
(1900-1958) quan um numbers are iaentical. AbSOI'pthH J
fully occupied subshell: spin pairing \ spectrum of 0
(opposite-spin electrons pair) f\ hemoglobin A= lg7 = lg e u-x
° [\
g f | o
Singlet and triplet states: £ f II'. absorption
number of orientations of magnetic moment associated with net spin state (in magnetic field g | . .
. mag . . SR ( 8 ) 2 / \ For dilute solutions - Lambert-Beer law:
= 25+1 =1 (singlet) or 3 (triplet). (S = net spin, e.g., in fully occupied subshell (+1/2)+(-1/2) = 0) \
S: singlet state: paired electrons with opposite spins, net spin (S) = 0, number of orientations j 1\ A =1 g & i i
= A —ca
(25+1) =1. \.,___ /x_/\‘_ - J
T: triplet state: there are identical spin-state electrons in the molecule, net spin =1 (e.g., 2, ) e S
) . &)= molar extinction coefficient
(+1/2)+(+1/2) = 1), number of orientations (25+1 = 2+1) = 3. Wavelength (nm) ¢ = concentration
* A excited energy level
| ® SI unit of molar extinction coefficient (¢;) : m2mol-!
? A sround state e Method ideal for concentration measurement
"""""""" 1 energy level e Based on the wavelength (at maximum) the c
* | 8) gth ( ) E,~E,=E, =h-f=h—
G . . t i be calculated: 2 1= ~ foton — -
round Excited Excited ransition energy may be calculated: A
singlet state singlet state triplet state




Absorbance

ABSORPTION
SPECTROSCOPY
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e Spectrum: intensity (or its derived
units, e.g., OD) as a function of
photon energy (or its derived
units, e.g., frequency, wavelength).

® Spectroscopy: qualitative analysis
of the spectrum.

® Spectrometry, spectrophotometry:
quantitative analysis of the
spectrum.

e Applications: analysis of chemical
structure, concentration
measurement, etc.

EMISSION BY LUMINESCENCE:

EVERYWHERE

Photoluminescence

LUMINESCENCE
EVERYWHERE

Display lights
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Aurora borrealis

Radioluminescence

LUMINESCENCE
EVERYWHERE

Bioluminescence




LUMINESCENCE
EVERYWHERE

Bioluminescence
Firefly

LUMINESCENCE
EVERYWHERE

Supeerresolution microscopy (Nobel-prize 2014)

Epifluorescence microscopy (cytoskeletal system)

Fluorescence

DEFINITIONS OF
LUMINESCENCE

®Relaxation from excited state
followed by light emission

$Radiation emitted by matter in
excess of thermal emission

@“Cold light”

®Processes of fluorescence and
phosphorescence

TYPES OF LUMINESCENCE

(a) Excitation Mode

Luminescence Type

absorption of radiation (UV/VIS)
chemical reaction

thermally activated ion recombination
injection of charge

high energy particles or radiation
friction

sound waves

photoluminescence
chemiluminescence, bioluminescence
thermoluminescence
electroluminescence
radioluminescence

triboluminescence

sonoluminescence

(b) Excited State (Assuming Singlet State)

Luminescence Type

first excited singlet state

lowest triplet state

fluorescence, delayed fluorescence

phosphorescence




Energy

PROCESSES OF
LUMINESCENCE

Jablonski diagram
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KASHA’S RULE

Photon emission (fluorescence or
phosphorescence) occurs only from
the lowest-energy excited electronic
state (i.e., S1 or T1) of a molecule.

Michael Kasha (1920-)
American physicist

excitation

TIME SCALE OF
TRANSITIONS
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quenching internal conversion
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energy transfer

CHARACTERIZATION OF
LUMINESCENCE I.

Luminescence spectra
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Fluorescent dyes: “fluorophores”
By the specific attachment fluorophores, non-fluorescent molecules may also be studied (fluorescent labeling)




LUMINESCENCE II. FLUORESCENCE
Quantum yield
: Fluorescence spectrometer
number of emitted photons f " ”
b= < ¢ = - - ﬂ
number of absorbed photons kg +|k,—c +kise +ko ( Steady state SPECtT’O uorometer)
knr=non-radiative transition rate constants
Spectrum recorded while Spectrum recorded while
the excitation wavelength Sample cell the emission wavelength
is varied 2 is varied
1 - 1 1 ] [ ]
EXClted State llfetlme i Excitation ! -i Emission
| spectrum \ i Beitation { | spectrum |
dN _ _(k + k ) . N N=molecules in excited ] \) \ . monoChramator; ] A \
| - f nr state i . \ | :
dt t=time j J =N | emission J | ki
N N e—( kj +k,, )t ke=fluorescence rate 1 : J . monochromator :’/ . ] )
= 0 constant F - o 2 & i
| Knr=non-radiative Aem= constant Aex= constant
T = transition rate constant (emission (exdvmtion
I maximum) maximum)
kf + knr t=fluorescence lifetime Photo detector
® Propagating electromagnetic disturbance. z
e Transverse wave. L.
o Therefore, it can be polarized. N\ & “=
Mi‘;ufl':»'t'ﬁ Photoselection:
_Nieid abs " selection - from a
Ny O~ o/ T
/ excitation light /' absorption vector
parallel with polarization
ﬁ '\o plane. ]Y
X @ Y polarizing
Jy filter
— Absorption and emission vectors of H
fluorophores: determine the probabilities of Jv
photon absorption and emission. y L
- ]
Dir\;r;tTouw AbsorptioAn is maxifnal'if abs?rpti()-n vector Polarization: p = oy = Jvy "
of wave and electrical polarization axis of light are I+ Jonr
mation parallel.
Electric
field Absorption depends on cos?a (« is the Jow =t ¢ additive quantity
vibration P P . . Ani . p=—2XY “VH  eInthe denominator: total
angle between absorption axis and nisotropy: £&3 J. +2J..  excitation intensity
electrival polarization vector). v WH (v




