Materials

elastic material elastic or viscous?

nor elastic and nor viscous.

viscous material

Physical basis of dental material science force results

force results
reversible change. . . . flow,
viscoelastic material . .
9. irreversible change.
Mechanical properties 3.
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Ideal viscous material

There is no any recovery.
The deformation is permanent.

Characteristic property:
Viscosity!

The measure of the resistance
of a material that is deformed
by either shear stress
or tensile stress.

Viscosity (7):

/ shearing force
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/ }, material A: surface
j— F: force )
" Ay: layer thickness
‘ stable base v : speed

The force is proportional to the speed, surface.

The resistance is due to the atomic interaction inside the material!

Description

Newton’s friction law: velocity gradient
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viscosity (internal friction coefficient) Ochear — 171 gspeed
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Ideal viscous body Constant deformation

Deformation in the case of constant €
force (stress).
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Newton’s law:
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Dependence on the temperature

viscosity of the water

soe2 honey in fridge or room
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oil in winter and summer
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e.g.at 20 °C:
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Normal (or newtonian) fluid:

The viscosity depends only on the temperature (independent from e.g. velocity gradient or
speed of flow).

Strongly depends on _ e—bT
the temperature! 77
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Anomalous (or non-newtonian) fluids:
The viscosity depends on the velocity gradient.
Pseudoplastic materials:
Viscosity decreases with the rate of shear.
blood
Fs ] 2
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It is also a common property of polymer solutions and molten polymers.
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Dilatant material
Viscosity increases with the rate of shear.
Walking on wet sand, F n
a dry area appears
underneath your foot.
[ avay | avay

»
Silly Putty
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Thixotropic material

Normally viscous, but becomes flow if stressed.

A

Synovial fluid is squeezed
‘out when joint bends,

This fluid also carries
nutrients to the joints

Another examples:

cytoplasm, semen.
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Viscoelasticity:
materials which exhibit both viscous and elastic characteristics when undergoing
deformation.
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Bingham-fluid (plastics)

Behaves as a rigid body at low stresses
but flows as a viscous fluid at high stress.

fluid _
Mayonnaise

Av/Ah

rigid

Tooth-paste
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Viscoelasticity:

After instant deformation:

o B Hooke’s law
g T elastic body (E—G) o=E¢
%]
O-shear = G}/
viscoelastic body Stress relaxation:
t
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time n
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Newton’s law
[ Oshear = 1 Jspeed } relaxation time
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Changing deformation in the case of contant force

Base models:

Viscoelastic materials
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Viscoelastic materials
viscoelastic - Voight
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Viscoelastic materials
viscoelastic
- Burgers El < E2
- T —F m <,

4.

20




Long-term phenomena

Change in:

/ slow increase: creep

shape:
\> slow decrease: shape recovery

/ fracture: fatique
integrity:
\ surface: abrasion

Creep :

This is the slow change in the dimensions
of a material due to prolonged stress.

Time interval

Stress is below the yield strength!

Definition
creep rate: deformation during unit time. 1-107s !
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stress: > slow decrease: stress relaxation
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o force generator
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Effect of the stress and the temperature
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Effect of the stress

Effect of the temperature

ceramics
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PP Creep Curve
22 —+—5MPa
Polipropilene (PP) 12 ——10uPa 1]
18 TT1
sy SV =t A
§ 12 H L
g1 e HH
o 08 T
08 —H e il
: i
creep rate: 02 i 11 T
8 L]
. . L 1 10 100 1000 10000 100000 1000000 10000000
deformation during unit time ‘)
25
Example: amalgam
Creep influences the marginal integrity of the filling.
melting point: 100 — 180 °C!
3
g
a
8
5
oL 1 | N
amalgam types
Increasing silver or copper content decreases the creep.
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Relaxation
shape recovery stress relaxation
recovery when the decrease of the stress at
load stops. constant deformation .
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Shape recovery then stress is removed.
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Stress relaxation

Decreasing of the stress in the case of
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Fatigue

This is the progressive and localized structural
damage that occurs when a material is
subjected to cyclic loading.

Stress is below the strength!
There is no immediate fracture.

Fatigue is a stochastic process.

Damage is cumulative.

Long, repeated load Fatigue is usually associated

— structural changes with tensile stresses.

— strength decreases

l

Short-term strength > long-term strength.

Type of loads

Static fatigue:

Long-term stress results
decrease in strength finally fracture.

testing a dental implants

A test equipment

m 0

34

cracks!
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Type of loads
symmetric Dynamic fatigue
Dynamically changing force.
asymmetric
E Asymmetric tension and compression
behavior of materials due to the asymmetric
atomic forces.
random
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Fatigue S-N curve:

Endurance Limit
(Curve &)

Stress Amplitude, S
o

Fatigue Strength at Ny Cycles
(Curve B

1
!
109 100 108 108 107 . 108

Cycles to Failure, N

109

e.g. steel, titanium, ...

e.g. aluminium, copper, ...

36




S-N CURVE POR BRITTLE ALUMDNIUM WITH A UTS OF 320 MPA

a test equipment
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S-N curves of different polymers RS
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Some factors

Geometry: Notches and variation in cross section.

Surface quality: Surface roughness.

Material type: E.g. composites and polymers differ markedly from metals.

Grain size: For most metals, smaller grains yield longer fatigue lives.

Temperature: Extreme high or low temperatures can decrease fatigue strength.

Prevention: E.g. stress should be below threshold of fatigue limit.

Abrasion

Loss of the structure by mechanical forces.

E.g.: toothbrush abrasion causes
V-shaped notches

(Erosion a chemical event!)
42
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Role of hardness
Most commonly affected: premolars and canines.
(position)
Cementoenamel junction

(very thin enamel)

is very sensitive.
§ N
8 material HV (MPa) HK (MPa)
a Enamel ~ 3400 3400-4000

Zzirkonium dioxide Dentin = 600 = 700
Amalgam ~ 1000
chew cycles
(cementum a little bit less hard than the dentine.)
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