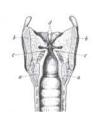

ULTRASCHALL

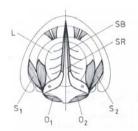
Notwendige Kenntnisse

Damjanovich et al.: Biophysik für Mediziner:

11/2.4., 11/2.4.1, 11/2.4.2, 11/2.4.3


VIII/4.2.1

Ausschlieslich für den Unterrichtsgebrauch

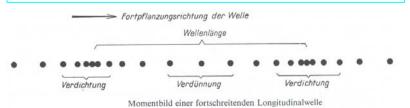

Einleitung

Was ist der Schall für eine Erscheinung?

Ein oszillierender oder vibrierender Körper <u>in einem</u> <u>elastischen Medium</u> strahlt *Schall* ab.

Die Schallwellen bestehen in einer *mechanischen Störung* des Gleichgewichtszustands der Materie, die sich *wellenförmig* ausbreitet.

2


Einleitung

Längswellen (longitudinale Wellen):

Verdichtungen und Verdünnungen (d.h. *Druckschwankungen gegenüber dem Normaldruck*) laufen über das Trägermedium.

Die Schwingungsrichtung der einzelnen Oszillatoren ist parallel zur Ausbreitungsrichtung der Welle.



Einleitung

Querwellen (transversale Wellen):

Wellenberge und Wellentäler laufen über das Trägermedium. Die Schwingungsrichtung der einzelnen Oszillatoren steht senkrecht zur Ausbreitungsrichtung der Welle.

Momentbild einer fortschreitenden Transversalwelle

Eingenschaften des Ultraschalls

mechanische Schwingung, mechanische Welle

Zur Ausbreitung ist immer ein *Medium* notwendig!

- Mechanische Transversalwellen entstehen nur, wenn elastische Querkräfte wirksam sind.
- * Mechanische longitudinale Wellen entstehen, wenn elastische Längskräfte wirken.
- In Festkörpern können sich Transversal- und Longitudinalwellen ausbreiten.
- Im *Innern von Flüssigkeiten und Gasen* können sich nur Längswellen ausbreiten.

Eingenschaften des Ultraschalls

Charakteristiken

Frequenz f > 20 kHzWellenlänge λ in den bildgebenden Geräten: f = 2 - 10 MHz

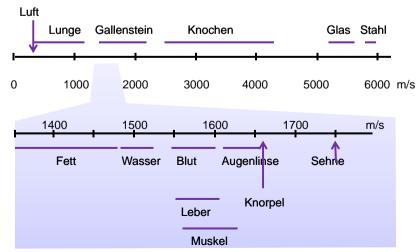
 $\lambda = 0.77 - 0.154 \text{ mm}$

Frequenzbereiche der Schallwellen:

a. 0 — 20 Hz Infraschall

b. 20 Hz — 20 kHz hörbarer Bereich

c. 20 kHz — 1 GHz Ultraschall


d. 1 GHz — 10 THz Hyperschall

Beispiel: f = 2 MHz

c = 1540 m/s in Weichteilgeweben

 $\lambda = ?$

Ausbreitungsgeschwindigkeit c (m/s)

Eingenschaften des Ultraschalls

Ausbreitungsgeschwindigkeit

unabhängig von der Frequenz => keine Dispersion

Stoff	Schallgeschwindigkeit (m/s)	Dichte (kg/m³)
Wasser (20 °C)	1483	998,2
Luft (p_0, T_0)	331	1,293
Fett	1470	970
Knochenmark	1700	970
Muskel	1568	1040
Gehirn	1530	1020
Knochen (kompakt)	3600	1700

Eingenschaften des Ultraschalls

Kompressibilität und Ausbreitungsgeschwindigkeit

$$\kappa = \frac{-\Delta V / V}{\Delta p}$$

 κ - Kompressibilität

- relative Volumenabnahme

$$c = \frac{1}{\sqrt{\rho \kappa}}$$

 ρ - Dichte

1. Eingenschaften des Ultraschalls

Die akustische Impedanz und Ausbreitungsgeschwindigkeit

$$Z = \frac{p}{v} = \frac{p_{max}}{v_{max}}$$

v - Teilchengeschwindigkeit

$$Z = c \cdot \rho = \sqrt{\frac{\rho}{\kappa}}$$

Medium P Dichte [kg/m3]		K Compressibilität Geschwindigkeit [1/GPa] [m/s]		Z akustische Impedanz [kg/(m² s]	0:/(f x) spezifische Dämpfung [dB/(cm MHz)]	
Luft	1,3	7650	331	0,00043 · 10 ⁶	1,2	
Lunge	400	5,92	650	0,26 · 10 ⁶	-	
Fett	925	0,51	1470	1,42 · 10 ⁶	0,63	
Wasser 20°C	998	0,45	1492	1,49 · 10 ⁶	0,0022	
Gehirn	1025	0,42	1530	1,56 · 10 ⁶	0,85	
Weichteile	1060	0,40	1540	1,63 · 10 ⁶	0,3-1,7	
Leber	1060	0,38	1560	1,65 · 10 ⁶	0,94	
Niere	1040	0,40	1560	1,62 · 10 ⁶	1,0	
Milz	1060	0,39	1566	1,64 · 10 ⁶	-	
Muskel	1060	0,40	1568	1,63 · 10 ⁶	1,3-3,3	
Blut	1060	0,38	1570	1,61-1,66 · 10 ⁶	0,18	
Augenlinse	1140	0,34	1620	1,84 · 10 ⁶	2,0	
Knochenmark	970	0,36	1700	1,65 · 10 ⁶	-	
Knochen, porös	1380	0,08	3000	2,2-2,9 · 10 ⁶	-	
Knochen, kompakt	1700	0,05	3600	6,12 · 10 ⁶	20,0	
Aluminium	2700	0,009	6400	17,28 · 10 ⁶	-	
Kontaktgel	-	-	-	6,5 · 10 ⁶	-	

Tabelle II.4.

Eingenschaften des Ultraschalls

Die Schallintensität

$$J = \frac{1}{2Z} \Delta p_{\text{max}}^2$$

Intensität = Energieflußdichte, Leistungsdichte

$$J = \frac{1}{Z} \Delta p_{\text{eff}}$$

effektiver Wert: $\Delta p_{\rm eff}^2 = \Delta p_{\rm max}^2/2$

$$P_{\rm el} = \frac{1}{Z_{\rm el}} U_{\rm eff}^{2}$$

elektrische Analogie

12

Intensität und Gewebeschädigung

Die Schallintensität bei Diagnostik $\bar{J} = 0.01 \text{ W/cm}^2 = 10 \text{ mW/cm}^2 < 100 \text{ mW/cm}^2$

Druckschwankung in Muskel:
effektiv ~0,13fache,
maximum ~0,2fache des Atmospherendruckes

Die Schallintensität bei der Therapie $\bar{I} = 2,5 \text{ W/cm}^2$

Druckschwankung in Muskel:
effektiv ~2fache,
maximum ~3fache des Atmospherendruckes

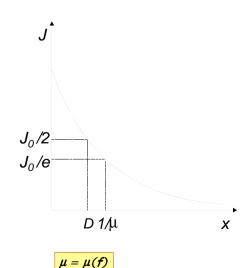
Vergleich: Hörshwelle $J_0 = 10^{-12} \text{ W/m}^2$ Schmerzgrenze $J = 10 \text{ W/m}^2$

13

Eingenschaften des Ultraschalls

Die Schwächung

Schwächungsgesetz


$$\mu = \frac{\ln 2}{D} = \frac{0,693}{D}$$

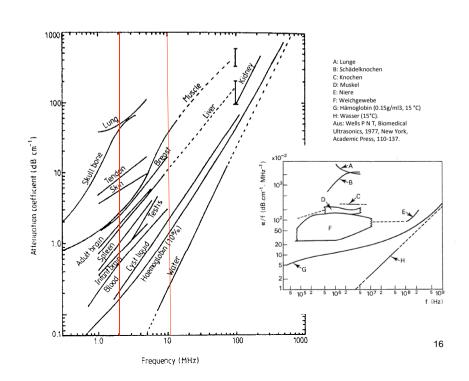
 $J = J_0 \cdot e^{-\mu x}$

$$\mu = \mu(f)$$

Stoff	D in cm bei f=0,9 MHz	D in cm bei f=2,5 MHz
Fett	7,7	2,8
Knochenmark	7,7	2,8
Muskel	2,7	1,0
Gehirn	3,6	1,3
Knochen	0,2	0,1
Wasser (distilliert)	500	180

Die Schwächung

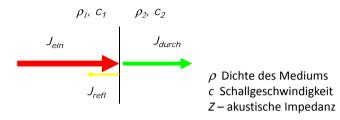
Dämpfung:


$$\alpha = 10 \cdot \lg \frac{J_0}{J} dB$$

 $\alpha = 10 \cdot \mu \cdot x \cdot \lg e \, dB$

spezifische Dämpfung: $\frac{\alpha}{f \cdot x}$

Für weiche Gewebe: ~1dB/(cm·MHz)


15

Frequenz (MHz)	Eindringtiefe (cm)	Untersuchungsgebiet
1	50	
2-3,5	25-15	Fetus, Leber, Herz, Veterinärmedizin (Großtiere)
3,5	15	Niere, Veterinärmedizin (große Hunde)
5	10	Gehirn, Veterinärmedizin (mittelgroße Hunde)
7,5	7	Veterinärmedizin (kleine Hunde, Katzen)
8-9	6	Prostata (endoskopisch)
10	5	
11-12	4-3	Pankreas (inoperativ)
7,5-15	7-2	Brustdiagnostik
20	1,2	
21-24	1,1-0,9	Auge, Haut
40	0,6	Haut, Gefäße

Eingenschaften des Ultraschalls

Reflexion

$$R = \frac{J_{refl}}{J_{ein}} = \left(\frac{\rho_1 \cdot c_1 - \rho_2 \cdot c_2}{\rho_1 \cdot c_1 + \rho_2 \cdot c_2}\right)^2 = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2$$

17

Eingenschaften des Ultraschalls

Reflexion

$$R = \frac{J_{refl}}{J_{ein}} = \left(\frac{\rho_1 \cdot c_1 - \rho_2 \cdot c_2}{\rho_1 \cdot c_1 + \rho_2 \cdot c_2}\right)^2$$

a. Grundformel der medizinischen Ultraschalldiagnostik

$$\rho_1 \cdot c_1 \ll \rho_2 \cdot c_2$$

 \Rightarrow

R≈1 totale Reflexion!

Gas — Flüssigkeit

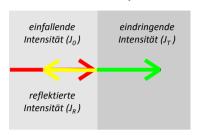
Gas — Festkörper

Anpassungsschicht (Koppelmedium): Wasser, Gel, Parafinöl

optimale Anpassung:

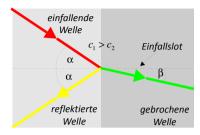
Reflexion

$$Z_1 \ll Z_2, \quad R \approx 1$$


Grenzfläche	R
Muskel/Blut	0,0009
Fett/Leber	0,006
Fett/Muskel	0,01
Knochen/Muskel	0,41
Knochen/Fett	0,48
Weichteilgewebe/Luft	0,99

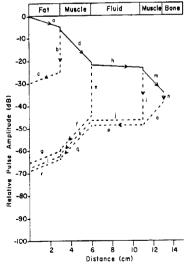
 $Z_{\text{Kopplung}} \approx \sqrt{Z_{\text{Quelle}} \cdot Z_{\text{Haut}}}$

Phänomene an der Grenzflächen zweier Medien


senkrechter Einfall

$$J_0 = J_R + J_T$$

Reflexion und Transmission


schräger Einfall

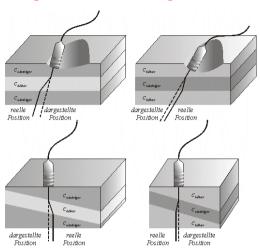
$$\frac{c_1}{c_2} = \frac{\sin \alpha}{\sin \beta}$$

21

Snellius-Descartes

Absorption und Reflexion

Je tiefer die Reflexionsschicht liegt, desto schwächer ist das Echosignal.


Die Verstärkung der Echosignale aus immer größeren Tiefe ist immer stärker.

TGC: time gain compensation

DGC: depth gain compensation

	Z ₁	Z ₂	R	R	10 lgR	T	T	10 lgT	
	g/(cm2 s)	g/(cm2 s)		%	dB		%	dB	
Muskel/Fett	1,63 10 ⁵	1,42 10 ⁵	0,004741	0,4741	-23,24	0,995	99,5	0,021	23

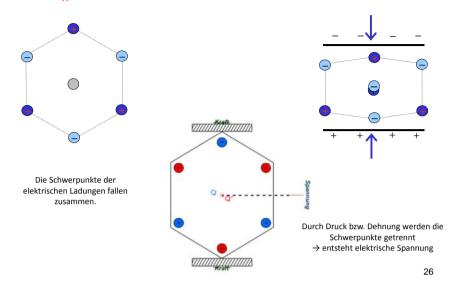
Schräger Einfall bzw. Schräge Grenzfläche

2. Erzeugung des Ultraschalls

- In zwei Schritten:
- a. Erzeugung sinusförmiger elektrischer Spannung mit hoher Frequenz f > 20 kHz
 - Sinusoszillator
- b. Umwandlung der elektrische Schwingung in mechanische Schwingung
 - Wandler (Transducer)

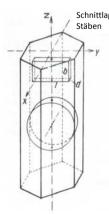
Wandler

Brüder Curie, 1881:


Bei Kristallen mit polaren Achsen (Turmalin, Quarz) treten durch Druck oder Dehnung in bestimmten Richtungen elektrische Ladungen an den Enden der polaren Achsen auf.

mechanische Schwingung ightarrow elektrische Schwingung piezoelektrischer Effekt

elektrische Schwingung ightarrow mechanische Schwingung reziproker piezoelektrischer Effekt


25

"Mechanismus" des Piezoeffektes :

Wandler: Schwingquarz

elektrische Schwingung \rightarrow mechanische Schwingung reziproker piezoelektrischer Effekt

Schnittlage von piezoelektrischen Quarzplatten und Stäben

 $f = \frac{269}{l}kHz$

Längsschwingung

 $f = \frac{283.9}{d}kHz$

Dickenschwingung

I, d in cm

Wandler: Schwingquarz

elektrische Schwingung \rightarrow mechanische Schwingung

Bermerkungen:

a. $f_{elektrische} = f_{mechanische}$

b. $A_{elektrische} \sim A_{mechanische}$

c. Umwandlung in beiden Richtungen!

Schwingquarz = Sender/Detektor