Medizinische Biophysik 7. Vorlesung

Licht in der Medizin.

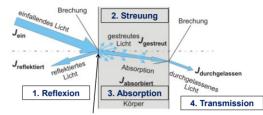
2015.10.21.

VI. Wechselwirkungen des Lichts mit der Materie

1. Reflexion

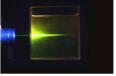
- a) Reflexionsgesetz:
- b) Reflexionskoeffizient (Reflektanz, Reflexionsgrad
- c) Reflexionsspektrum:

2. Streuung


- a) spektraler Streuungskoeffizient
- b) elastische Streuung (Rayleigh-Streuung, Mie-Streuung)
- c) dynamische Lichtstreuungsmessung:
- d) unelastische Streuung (Raman-Streuung)

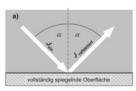
3. Absorption

- a) spektraler Absorptionskoeffizient
- b) Absorptionsspektrum
- c) Mechanismus:
- d) Absorptionsgesetz, Absorbanz



VI. Wechselwirkungen zwischen Licht und Materie

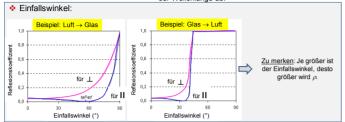
Die in den Körper eindringende Intensität ist J_0 : $J_0 = J_{\text{ein}} - J_{\text{reflektiert}}$





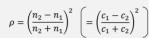
1. Reflexion

a) Reflexionsgesetz: $\alpha = \beta$



b) Reflexionskoeffizient (Reflektanz, Reflexionsgrad) ρ (auch R):

Der Reflexionskoeffizient $\,
ho\,$ hängt von: $\,-\,$ dem Einfallswinkel $\,-\,$ dem Material


dem Material
der Wellenlänge ab.

Material:

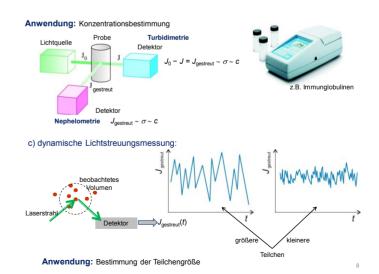
Beim senkrechten Einfall und für durchsichtige Stoffe:

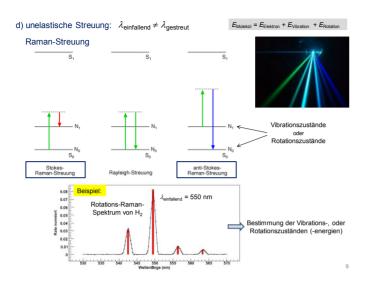
(s. später Ultraschallreflexion)

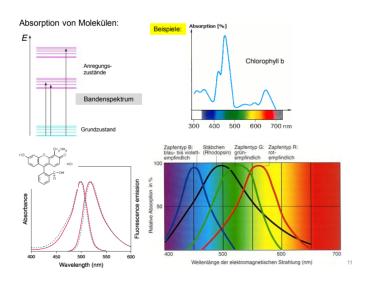
2. Streuung

a) spektraler Streuungskoeffizient $\sigma(\lambda)$: $\sigma(\lambda) =$

b) elastische Streuung: $\lambda_{\text{einfallend}} = \lambda_{\text{gestreut}}$

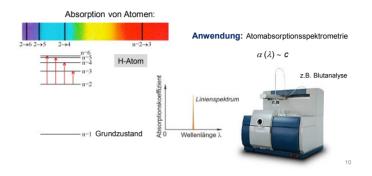

Rayleigh-Streuung
 (Größe der Streuteilchen d << λ)

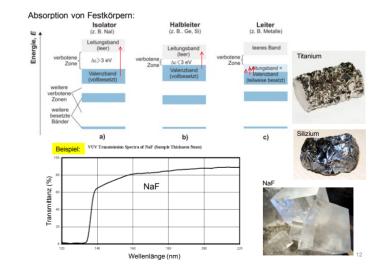




 $\sigma(\lambda)$ ist unabhängig von λ !

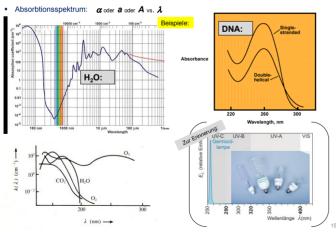
Wellenlänge: $\frac{J_{\text{reflektiert}}(\lambda)}{J_{\text{einfallend}}(\lambda)}$ spektraler Reflexionskoeffizient φ(λ): c) Reflexionsspektrum: ρ vs. λ (absolut) weiß Beispiel: Metalle UV VIS Reflektanz (%) Kupfer Wellenlänge, λ (nm) 30-20-Farbe des Körpers im reflektierten Licht Wellenlänge, \(\lambda\) (nm)





3. Absorption

- a) spektraler Absorptionskoeffizient $\alpha(\lambda)$: $\alpha(\lambda) = \frac{J_{\text{absorbiert}}(\lambda)}{J_{\text{einfallend}}(\lambda)}$
- b) Absorptionsspektrum: α vs. λ
- c) Mechanismus:


Halbwertsdicke (D):

Eindringtiefe (δ):

■ Linearer Absorptionskoeffizient (a), Maßeinheit: 1/m

13

 $\qquad \text{Absorbanz (A):} \qquad A = \lg \frac{J_0}{J} \quad \text{(dimensionslose Zahl)}$

Hausaufgaben: ■ Aufgabensammlung 2.62-72

16

14