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Muscle

Tissue and/ or cell specialized for
the generation of force and
movement.

It can only pull, not push (...).
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Types of muscle
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Skeletal muscle

Myofibrils:
The organelle-level
structural and
functional units of

muscle.

The sarcomere
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Basic phenomena of muscle function I.

Force Complete tetanus
(above fusion frequency)

Partial tetanus
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Basic phenomena of muscle function Il.

1. Isometric contraction 2. Isotonic contraction
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Auxotonic contraction (simultaneous shortening and force generation)

Basic phenomena of muscle function lll.

1. Work, Power 2. Force-velocity diagram

Fmax= 30 N/cm2-muscle

Fmax

W=Fs
P=Fs/t=Fv

Pmax (at appr. 30% Vmax)
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Mechanisms of muscle shortening
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The myosin “cross-bridge” cycle

I

—/—/— P
M.ADP.P M.ATP ,; o
Tioparsi ADP Mi 2+

Elasticity of striated muscle
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Role of titin in sarcomere:
Limitation of A-band asymmetry

Contraction regulation in striated muscle

: troponin
actin complex

tropomyosin

myosin-binding site exposed
tropomyosin blocking by Ca**-mediated tropomyosin
myosin-binding site movement

aktin 4+ ca?*

.

-ca* “




BIOPHYSICS OF

BIOLOGICAL MOTION

Types of biological motion

Axonal (neurite) growth Moving spermatocytes

Types of biological motion

Wound healing model - collective Intracellular movement of
fibroblast moevent pathogenic Listeria bacteria

Dynamic filamentous system of eukaryotic cells

Three main filament classes:

Filament mechanics is important

Polymerization: “smart brick” building blocks

Role:

The cytoskeletal system

A. Thin (actin)
B. Intermediate
C. Microtubules

A. Movement, shape
B. Cell division
C. Intracellular transport

¢ Actin




The cytoskeletal system

Actin Vimentin Mikrotubules
(rodamin-phalloidin) (anti-vimentin) (GFP-tubulin)

1. Mechanics
2. Polymerization

Polymerization

Process of the assembly of monomers

Phases of polymerization:
1. Lag phase: nucleation
2. Growth phase
3. Equilibrium phase

Polymer

quantity Equilibrium

Growth

Lag Time

Polymerization equilibria

1. True equilibrium

—> %

2. Dynamic instability: slow growth followed by
“catastrophic” depolymerization

3. Treadmilling

The actin filament (F-actin)
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Actin in the cell

cortex
stress fibers,

cellular processes (lamellipodia, filopodia,
microspikes, focal contacts, invagination)
microvillus
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Stress fibers cortex filopodium

Actin-dependent cell movement

actin cortex lamellipodium Substratum
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Intracellular pathogens make use
of the actin system
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Intracellular motility of Listeria monocytogenes
bacteria

Cytoplasmic
actin flaments

Microtubular system

Filamentous system of eukaryotic cells composed of
tubulin and its associated proteins




; Polymerization equilibria in
The microtubule S b

Treadmilling Dynamic instability
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Right-handed short-pitch helix
Left-handed long-pitch helix
Rigid polymer chain (persistence or correlation length is a few mm!)

Structural polarity:

+end: rapid polymerization, terminated by B-subunit
-end: slow polymerization, terminated by o-subunit
GTP-cap

Microtubular system in the eukaryotic cell Functions of the microtubular system

1. “Highways” for motor proteins
2. Senses, monitors and finds the geometric center of the cell.
3. Motility functions (e.g., cell division)

Where? %

Cytoplasm of interphase cell, axon, cilia, iliated cell
flagella, mitotic spindle. i decrease
- cAMP
-
B Sl increase
Polarity within the cell cAMP

-end in centrosome, +end in periphery.
Centrosome: 2 centrioles, centrosome matrix with e ‘pol
y-tubulin. ]

Microtubules might be involved in the
commitment and fixation of cell polarity with the
help of associated (capping) proteins.
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Intermediate filament system

Tissue-specific filamentous protein system composed of 8-10-nm filaments,
found on most animal cell types.
Fundamental biological function is providing mechanical stability.

Vimentin, Vic Small

Intermediate filament building blocks

Intermediate filament dimer:

Properties: -Chemically resistant (detergents, high ionic strength)
-Can be extracted with denaturants (e.g., urea)
-Fibrous monomer (not globular as actin or tubulin)
-amino-terminal head
-central rod (a-helix, heptad repeat)
-carboxy-terminal tail
-tissue-specific monomers differ in their terminal sequences

Classification of intermediate filaments

Based on tissue specificity
(Classical categories)

Tissue type Intermediate filament
Epithelium Keratins
Muscle Desmin
Mesenchyme Vimentin
Glia Glial fibrillar acidic protein (GFAP)
Neurofilaments (NF-L, NF-M, NF-
Nerve H)

Polymerization of intermediate filaments

Fully polymerized state in the cell
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Tissue functions of intemediate filaments

Providing mechanical stability
Epithelial cells:

-Pathology: epidermolysis bullosa simplex. Mutation in the keratin gene.
Bullous epithelial destruction upon minor mechanical effects.

basal cell of epidermis
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MOTOR PROTEINS

1. Bind to specific filaments
2. Generate force and displacement

3. Convert chemical energy to mechanical

Types of motor proteins

1. Actin based
Myosins: Conventional (myosin II) and non-conventional
Myosin superfamily (I-XXIV classes). Move towards plus end.

2. Microtubule based
a. Dyneins: Ciliary (flagellar) and cytoplasmic dyneins.
Move towards the minus end along the microtubule.
b. Kinesins: Kinesin superfamily: conventional and non-conventional.
Move towards the plus end along the microtubule.
¢. Dynamins: MT-dependent GTPase activity
Biological role: vacuolar protein sorting (pinchase enzymes)?

3. DNA based motors
DNA and RNA polymerases, virus capsid packaging motor, condensins
Produce force and displacement along the DNA strand

4. Rotary motors
F1F0-ATP synthase
Bacterial flagellar motor

5. Mechanoenzyme complexes
Ribosome

Duty cycle of motor proteins

OV  d=working distance
“Duty ratio”: ¥ = ——  V=ATPase rate
A% v=sliding velocity

Duty cycle

Processive motor:  r->1
E.g., kinesin, DNA-, RNA-polymerase.

Remains attached throughout most of the duty cycle.
Carries its load by itself.

Attached

Ton

Detached
Tost Non-processive motor: r->0
E.g., myosin.
Remains detached throughout most of the duty cycle.
Works in ensembles.

Force generated by a single motor protein: few pN.
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Non-processive motor proteins
Myosin
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Actin filament

Step size: 5.5 nm

(distance between neighboring actin subunits)

Non-processive motors work in ensembles
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PROCESSIVE MOTOR PROTEINS

Kinesin

Step size: 8 nm
(distance between every other tubulin subunit)
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control

Step size: ~36 nm
(half pitch along actin helix)

Processive motors work alone.

DNA Motors
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RNA Polymerase , Wang et al. 1998.
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ROTARY MOTORS I:

F1FO-ATP Synthase
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ROTARY MOTORS II:

Bacterial flagellar motor
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Speed: > 20000 rpm

Energy consumption: 1016 W
Efficiency: > 80%

Energy source: protons




