Bodies

elastic material elastic or viscous?

viscous material

nor elastic and nor viscous.

Physical basis of dental material science force results force resuits
reversible change. . . . flow,
viscoelastic material . .
9. irreversible change.
Mechanical properties 3.
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ViSCOGIaStiCity: Ideal elastic body! Constant deformation
materials which exhibit both viscous and elastic characteristics when undergoing £
deformation. Constant force (stress)
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Ideal viscous body

Deformation in the case of constant
force (stress).
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Newton’s law:

o-shear =n gspeed

Newtonian dumper, l [ e
dashpot

Viscosity (n):
measure of the resistance of a fluid which is deformed by either shear stress or
tensile stress.

A I -
= I moving, solid plate
V
2 } —’_‘
A} * fluid A: surface
—— F: force
= Ay: layer thickness
‘ | stable base v : speed
L. velocity gradient
Newton’s friction law:
F Av )
—= =7 =g - gradient
A Ay

viscosity (internal friction coefficient)

[,7] =Pa-s _O-shear = 77 gspeed

Dependence on the temperature
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material air water blood (37°) | glycerine
e.g.at 20 °C:
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Normal (or newtonian) fluid:

The viscosity depends only on the temperature (independent from e.g. velocity gradient or
speed of flow).
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Anomalous (or non-newtonian) fluids:

The viscosity depends on the velocity gradient.

. Dilatant:
Pseudoplastic:

Viscosity decreases with the rate of shear. Viscosity increases with the rate of shear.
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Tixotropy: normally viscous, but becomes flow if stressed.
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- Synovial fluid is squeezed

out when joint bends,
This fluid also carries
nutrients to the joints

Bingham-fluid (plastics): behaves as arigid body at low stresses but flows as a viscous

fluid at high stress.
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Tooth-paste

Viscoelasticity:

After instant deformation:

Hooke’s law
% elastic body (E—G) o=E¢
Gshear = G}/

stress

viscoelastic body Stress relaxation:
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Changing deformation in the case of contant force
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Long-term phenomena

Change in:

/ slow increase: creep

shape:
\> slow decrease: shape recovery

/ fracture: fatigue
integrity:
\ surface: abrasion

C . is the slow change in the dimensions of a =
reep . material due to prolonged stress.

Stress is below the yield strength!

force generator creep rate:

stress, o

deformation during unit time

time, t

fracture
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stress: _— slow decrease: stress relaxation
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Effect of the stress and the temperature
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PP Creep Curve

——5MPa

Polipropilene (PP)

Example: amalgam

Creep influences the marginal integrity of the filling.

melting point: 100 — 180 °C!

creep (%)

o L

amalgam types

Increasing silver or copper content decreases the creep.
18

Be ——10uPa
18
14 —+
12
g s
o =
08
e
08 HH H
04 L
0.2 i
o .
1 10 100 1000 10000 100000 1000000 10000000 ceramics
Ref. 1
t(s) 10781
vsz .
10—4—Th0 9.4-mol%YSZ oo
MgO
105 \\
- MgAI204 ~—
» 1078 ~
g Al20g
£ 107 e \
creep rate: 5 ~—Rers
& 108 Vios® 21-mol%YSZ -
. . o .
deformation during unit time 1091 5. m01% Er,0a-doped ZrOy fibers
BRER
10711 1 I ]
45 50 55 60 6.5 17
10%/temperature, K-

shape recovery

recovery when the
load stops.

stress relaxation

decrease of the stress at
constant deformation .
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Shape recovery after stress removed.

force generator
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Al stress (MPa)

Stress relaxation

Decreasing of the inner stress in the case
of constant deformation.

film made of myofibrillar proteins
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Fatigue

is the progressive and localized structural
damage that occurs when a material is
subjected to cyclic loading.

Stress is below the strength!

Fatigue is a stochastic process.

Damage is cumulative.
Long, repeated load

— structural changes
t th d . . .
— sirength decreases Fatigue is usually associated
with tensile stresses.

cracks!
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.| Experimentally, relaxation occurs .
Taster than creep in ligament
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Fatigue S-N curve:
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S-N curves of different polymers
PET: Polyethylene terephthalate PP: Polyethylene terephthalate
PS: Polystyrene PE: Polyethylene
PMMA: Poli(methil metacrylate) PTFE: Polytetrafluoroethylene
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Dynamic fatigue at 0.5Hz, 20C

Stress (MPa)
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Cycles to failure

Some factors

Geometry: Notches and variation in cross section.

Surface quality: Surface roughness.

Material type: E.g. composites and polymers differ markedly from metals.

Grain size: For most metals, smaller grains yield longer fatigue lives.

Temperature: Extreme high or low temperatures can decrease fatigue strength.

Prevention: E.g. stress should be below threshold of fatigue limit.
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Abrasion
Loss of the structure by mechanical forces.
E.g.: toothbrush abrasion causes
V-shaped notches
(Erosion a chemical event!)
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Role of hardness

Most commonly affected: premolars and canines.
(position)

Cementoenamel junction
(very thin enamel)

is sensitive.
§ n
8 material HV (MPa) HK (MPa)
= enamel Enamel ~ 3400 3400-4000
Zzirkonium dioxide Dentin ~ 600 ~ 700
Amalgam ~ 1000

chew cycles

(cementum a little bit less hard than the dentine.)
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