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Physical basis of dental material science 

9. 

Mechanical properties 3. 

Bodies 
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elastic material viscous material elastic or viscous? 

force results  

reversible change. 

force results  

flow, 

irreversible change. 

nor elastic and nor viscous. 

 

viscoelastic material 
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Viscoelasticity:  
materials which exhibit both viscous and elastic characteristics when undergoing 

deformation.  
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Hookean elastic 

spring  

Constant force (stress) 

Ideal elastic body! Constant deformation 

no stress 

relaxation! 

 E

 Gshear

Hooke’s law: 

Model: 
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Deformation in the case of constant 

force (stress). 

Ideal viscous body Constant deformation 

Newtonian dumper, 

dashpot 

immediate 

stress 

relaxation 

speedshear g 

Newton’s law: 

Model: 
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Viscosity ():  
measure of the resistance of a fluid which is deformed by either shear stress or 

tensile stress. 
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Newton’s friction law: 
velocity gradient 

viscosity (internal friction coefficient) 

[] = Pa·s 
speedshear g 
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v
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F
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s

A: surface 

F: force 

y: layer thickness 

n : speed 

fluid 

stable base 

moving, solid plate 

= g - gradient 
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viscosity of the water 

Dependence on the temperature 

bTe~strongly depends on 

the temperature. 

honey in fridge or room 

oil in winter and summer 
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material air water blood (37°) glycerine 

 (mPa·s) 0.019 1 28 1490 

e.g. at 20 ºC: 

Ff 

v/y 

 

v/y 

newtonian 

The viscosity depends only on the temperature (independent from e.g. velocity gradient or 

speed of flow). 

Normal (or newtonian) fluid: 
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Anomalous (or non-newtonian) fluids: 

The viscosity depends on the velocity gradient. 

Ff 

v/y 

 

v/y 

Pseudoplastic: 

Viscosity decreases with the rate of shear. 

Ff 

v/y 

 

v/y 

Dilatant: 

Viscosity increases with the rate of shear. 

physiological 

range 

blood 

velocity drop (1/s) 
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Silly Putty 
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Bingham-fluid (plastics): behaves as a rigid body at low stresses but flows as a viscous 

fluid at high stress. 

F 

v/h 

Tixotropy: normally viscous, but becomes flow if stressed.  

 

t 

Tooth-paste 
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Viscoelasticity: 

Stress relaxation: 

After instant deformation: 

(E → G) 

() relt

t

e


 0

G
t


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 E

 Gshear

speedgshear  

Hooke’s law 

Newton’s law 

 
0 

time 

relaxation time 
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elastic body 

viscous body 

viscoelastic body 
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Models: 

F „on” 

F „off” 

21 EE 
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Hookean 

elastic 

spring 

Newtonian 

dumper 

Changing deformation in the case of contant force 

elastic viscous 
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(Kelvin-Voigt) 

(Kelvin) 

 - Burgers 

viscoelastic - Maxwell 
viscoelastic - Voight 

viscoelastic 

 - Burgers 

Long-term phenomena 
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shape: 

slow increase: creep 

slow decrease: shape recovery 

stress: slow decrease: stress relaxation 

integrity: 

fracture: fatigue 

surface: abrasion 

Change in: 
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Creep: 
is the slow change in the dimensions of a 

material due to prolonged stress. 

Stress is below the yield strength! 

1107 s !! 

due to the 

necking! 

described by the 

stress-strain 

diagram 

creep rate: 

 

deformation during unit time 

creep rate 

~ constant 

high 

creep rate 
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Effect of the stress and the temperature 

temperature! 

e.g. metals 

0.4Tm < T 

load 

im
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Modell: ? ― Maxwell 
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t (s)  

 
(%

) 
 

Polipropilene (PP) 

ceramics 

creep rate: 

 

deformation during unit time 
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Example:   amalgam 

Creep influences the marginal integrity of the filling. 

melting point:  100 – 180 °C! 

Increasing silver or copper content decreases the creep. 
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Relaxation 

shape recovery stress relaxation 

decrease of the stress at 

constant deformation . 

recovery when the 

load stops.  
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Shape recovery after stress removed. 
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Stress relaxation 

Decreasing of the inner stress in the case 

of constant deformation. 

aluminium 

film made of myofibrillar proteins  

22 
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Fatigue 

Long, repeated load 

 → structural changes 

  → strength decreases 

cracks! 

Fatigue is a stochastic process. 

Stress is below the strength! 

Fatigue is usually associated 

 with tensile stresses. 

Damage is cumulative.  

is the progressive and localized structural 

damage that occurs when a material is 

subjected to cyclic loading. 

Type of loads 
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symmetric 

assymmetric 

random 

a test equipment 

Dynamic fatigue 

Static fatigue: 

 

Long-term stress results 

decrease in strength. 
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e.g. steel, titanium, … 

e.g. aluminium, copper, ... 

Fatigue S-N curve: 

26 

27 

a test equipment 
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PET: Polyethylene terephthalate 

PS: Polystyrene 

PMMA: Poli(methil metacrylate) 

PP: Polyethylene terephthalate 

PE: Polyethylene 

PTFE: Polytetrafluoroethylene 

S-N curves of different polymers 
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Some factors 

30 

Geometry: Notches and variation in cross section. 

Surface quality: Surface roughness. 

Material type: E.g. composites and polymers differ markedly from metals. 

Grain size: For most metals, smaller grains yield longer fatigue lives. 

Temperature: Extreme high or low temperatures can decrease fatigue strength. 

Prevention: E.g. stress should be below threshold of fatigue limit. 
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Abrasion 

Loss of the structure by mechanical forces. 

E.g.: toothbrush abrasion causes  

V-shaped notches 

(Erosion a chemical event!) 

Role of hardness 
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Most commonly affected: premolars and canines. 

(position) 

Cementoenamel junction 

(very thin enamel) 

is sensitive. 

material HV (MPa) HK (MPa) 

Enamel ≈ 3400 3400-4000 

Dentin ≈ 600 ≈ 700 

Amalgam ≈ 1000 

(cementum a little bit less hard than the dentine.) 


