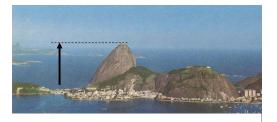

Elektrizitätslehre 2.

Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke:


Elektrisches Potential

Man braucht $W_{0\rightarrow i}$ Energie um eine q Probeladung aus einem P_0 Bezugspunkt zum Punkt P_i zu bringen.

 $\frac{W_{0 \rightarrow i}}{q}$ ist unabhängig von der Probeladung und vom Weg!

Elektrisches Potential: Einheit: Volt [V]

$$\varphi_i = \frac{W_{0 \to i}}{q} \qquad 1V = \frac{1J}{1C}$$

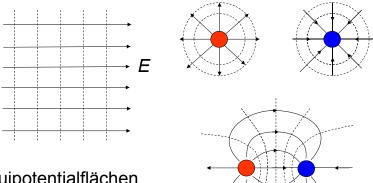
Spannung

Elektrische Spannung zwischen zwei Punkten P₁ P₂ (Spannung des Punktes P₂ gegenüber P₁)

$$U_{21} = \frac{W_{1 \to 2}}{q}$$

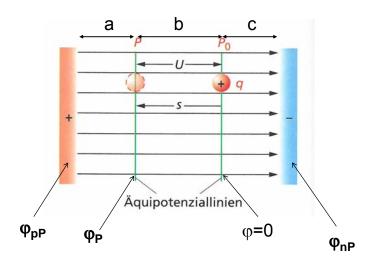
Einheit: Volt [V]

Bemerkungen:

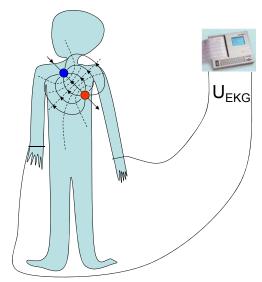

$$U_{21} = \varphi_2 - \varphi_1$$

Wenn U_{21} >0 => P_2 ist "positiver" als P_1

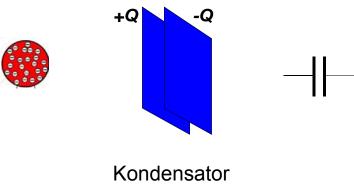
$$U_{21}$$
= - U_{12}


$$U_{21}$$
 = - U_{12}
In homogenem Feld: $U_{21} = \frac{W_{1\rightarrow 2}}{q} = \frac{q|\vec{E}|s}{q} = Es$

Äquipotentialflächen


Äquipotentialflächen verlaufen senkrecht zu den Feldlinien

Bewegung an einer Äquipotentialfläche: keine Arbeit!

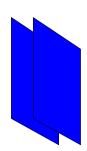


zB: E=140 N/C, a=2cm, b=3 cm c=2 cm φ_{pP} =? φ_{P} =? φ_{nP} =?

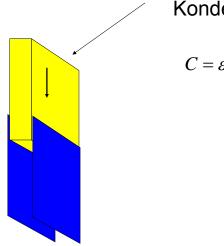
Medizinische Anwendung: EKG

Ladungsspeiherung

Kapazität des Kondensators

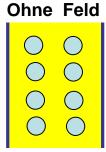

Ladungsspeicherungsfächigkeit

$$C = \frac{Q}{U}$$

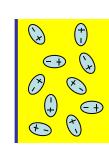

Einheit: Farad, F
$$1F = \frac{1C}{1V}$$

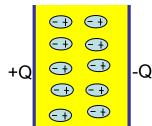
Für Plattenkondensator gilt:

$$C = \varepsilon_0 \frac{A}{d}$$



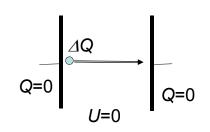
Dielektrikum zwischen Kondensatorplatten


 $C = \varepsilon_0 \varepsilon_r \frac{A}{d}$

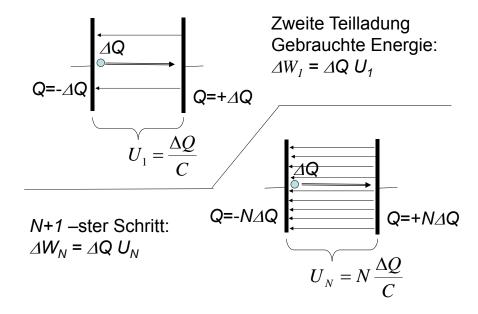

Polarisierbare Moleküle

Im elektr. Feld

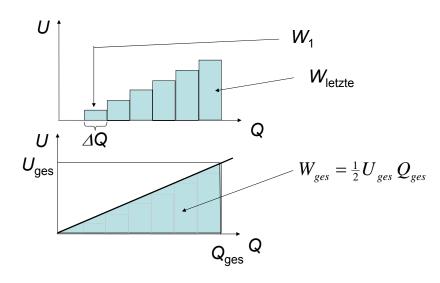
Polare Moleküle

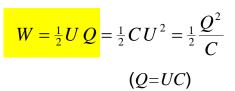


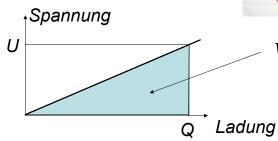
Energiespeicherung im Kondensator

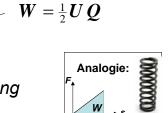

Welche Energie ist nötig um einen Kondensator mit Q Ladung an U Spannung aufzuladen?

Aufladung in kleinen Schritten:


△Q Teilladung wird von einer Platte zur anderen Platte gebracht


Erste Teilladung: Ohne Energie! Kein Feld!


Graphische Darstellung der Aufladungsenergie



Die in dem Kondensator gespeicherte Energie:

Parallelschaltung von Kondensatoren:

$$\begin{array}{c|c}
+Q_1 & -Q_1 \\
\hline
C_1 & U_1 \\
+Q_2 & -Q_2
\end{array}$$

$$\begin{array}{c|c}
C_p & -Q \\
\hline
U_1 = U_2 = U$$

$$\begin{array}{c|c}
Q = Q_1 + Q_2 \\
UC_p = UC_1 + UC_2 \\
\hline
C_p = C_1 + C_2
\end{array}$$

Reihenschaltung von Kondensatoren:

$$\begin{array}{c|c}
+Q_2 \\
\hline
C_2
\end{array}
\begin{array}{c|c}
-Q_2
\end{array}
\begin{array}{c|c}
+Q_1
\end{array}
\begin{array}{c|c}
-Q_1
\end{array}$$

$$\begin{array}{c|c}
+Q \\
\hline
C_p
\end{array}$$

$$\begin{array}{c|c}
U = U_1 + U_2
\end{array}$$

$$\begin{array}{c|c}
Q_1 - Q_2 = 0\\
Q_1 - Q_2 = Q
\end{array}$$

$$\begin{array}{c|c}
\frac{Q}{C_r} = \frac{Q}{C_1} + \frac{Q}{C_2}
\end{array}$$

$$\begin{array}{c|c}
\frac{1}{C_r} = \frac{1}{C_1} + \frac{1}{C_2}
\end{array}$$

Parallel und Reihenschaltung von Kondensatoren:

Parallel- und Reichenschaltung von mehreren Kondensatoren:

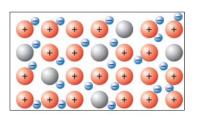
$$C_p = C_1 + C_2 + C_3 + \dots$$

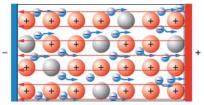
$$\frac{1}{C_r} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

Elektrischer Strom

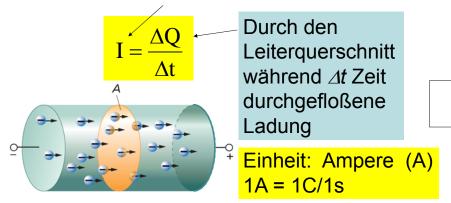
Strom = Bewegung der Ladungen

Strom im Vakuum Strom im Gas Strom in Flüssigkeit (Lösung) Strom im Festkörper

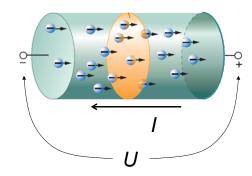

Der Leitungsvorgang hängt ab von:


- Art und Anzahl der beweglicher Ladungsträger
- der Behinderung der Bewegung durch andere Teilchen
- der angiegenden Spannung

Leiter	Halbleiter	Nichtleiter
besitzen eine große Anzahl beweglicher Ladungsträger (Elektronen, lonen).	besitzen bewegliche Ladungsträger (Elektronen, Defektelektronen).	besitzen nur wenige oder keine beweglichen Ladungsträger.
Metalle Elektrolyte ionisierte Gase	Silicium Germanium Verbindungen (GaAs, PbS)	Vakuum Isolatoren (Porzellan, Papier, Gummi) Gase ("normale" Luft)
Bei Metallen kommt auf ein Atom im Mittel ein bewegliches Elektron.	Bei Halbleitern kommt auf 10 ⁴ – 10 ⁷ Atome ein beweglicher Ladungs- träger.	Bei Nichtleitern kommt auf mehr als 10 ¹⁰ Atome ein beweglicher Ladungsträger.


Strom in Metalle

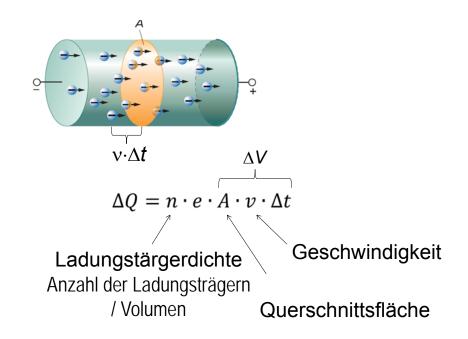
Metall: Feste Atomkerne mit geschlossenen Elektronenhüllen Die Elektronen der äußere Hüllen bewegen sich frei. (Sie sind "kollektive" Elektronen)


Elektrische Stromstärke*

Konventionelle (technische) Stromrichtung: Bewegungs-richtung der positive Ladungen.

*diese definition ist allgemein, unabhängig davon in welchem Medium der Strom fliesst (Metall, Gas, Vakuum..)

Bei Metallen:



d.h. *U/I* ist konstant. Diese Konstante wird als *Widerstand* bezeichnet:

$$R = \frac{U}{I}$$

Einheit : Ohm
$$\Omega = \frac{V}{A}$$

- Ohmsches Gesetz

$$\Delta Q = n \cdot e \cdot A \cdot v \cdot \Delta t$$

Die Stromstärke:

$$I = \frac{\Delta Q}{\Delta t} = n \cdot e \cdot A \cdot v$$

Die durchschnittliche Geschwindigkeit:

$$v \sim E = \frac{U}{l}$$
$$I \sim n \cdot e \cdot A \cdot \frac{U}{l}$$

$I \sim n \cdot e \cdot A \cdot \frac{U}{l}$

$$\frac{U}{I} \sim \frac{l}{n \cdot e \cdot A} = R$$

$$R = const \frac{l}{A} = \rho \frac{l}{A}$$

Spezifischer Widerstand

Einheit: Ω m oder Ω mm²/m

Spezifische Widerstandswerte:

Stoff ρ	$(\Omega \text{mm}^2/\text{m})$	Stoff ρ	$(\Omega mm^2/m)$
Silber	0,016	Kohlenstoff	≈35
Kupfer	0,017	Dest. Wasser	10 ¹⁰
Gold	0,023	Transforma-	
Aluminium	0,028	torenöl	10 ¹⁵ -10 ¹⁶
Eisen	0,1	Porzellan	10 ¹⁸
Wolfram	0,05	Quarzglass	5·10 ²²
Konstantan	0.5	9	

Elektrische Leitfächigkeit: $\sigma = \frac{1}{\rho}$

Spezifische Widerstandswerte:

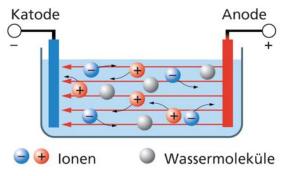
Elektrische Leitfächigkeit: $\sigma = \frac{1}{\rho}$

Bemerkung

Strom = **geordnete** Bewegung der Ladungsträgern Wärmebewegung ~ km/s Strombewegung ~ mm/s (Driftgeschwindigkeit)

Analogie: Warenhaus

20 m



Widerstand als physikalische Größe und Schaltelement

$$R = \frac{U}{I}$$
 [Ω]

Strom in Flüssigkeiten

Ladungsträgern entstehen durch Dissoziation

zB: Cl- und Na+

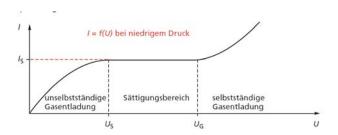
Stoffmenge (mol)

Q=nzF

Wertigkeit der Ionen

Strom in Gasen

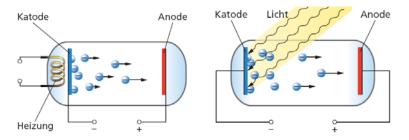
Entstehung von beweglichen Ladungsträger:


- Ionisation durch äußeren Einwirkungen:

Strahlung Wärme

. .

Gasmoleküle Flonen Elektronen


Stoßionisation

Strom in Vakuum

Freie Ladungsträger: Elektronen

- Glühelektrischer Effekt
- Lichtelektrischer Effekt

Röntgenröhre, Braunsche Röhre: S. Vorlesung 2!

