ULTRASCHALL

Notwendige Kenntnisse

Damjanovich et al.: Biophysik für Mediziner:

11/2.4., 11/2.4.1, 11/2.4.2, 11/2.4.3

VIII/4.2.1

Ausschlieslich für den Unterrichtsgebrauch

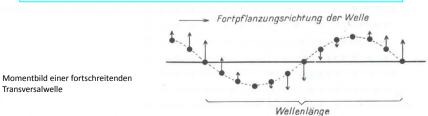
Einleitung

Längswellen (longitudinale Wellen):

Verdichtungen und Verdünnungen (d.h. Druckschwankungen gegenüber dem Normaldruck) laufen über das Trägermedium.

Die Schwingungsrichtung der einzelnen Oszillatoren ist parallel zur Ausbreitungsrichtung der Welle.

2


Einleitung

Transversalwelle

Querwellen (transversale Wellen):

Wellenberge und Wellentäler laufen über das Trägermedium. Die Schwingungsrichtung der einzelnen Oszillatoren steht senkrecht zur Ausbreitungsrichtung der Welle.

Eingenschaften des Ultraschalls

mechanische Schwingung, mechanische Welle

Zur Ausbreitung ist immer ein *Medium* notwendig!

- Mechanische Transversalwellen entstehen nur, wenn elastische Querkräfte wirken.
- * Mechanische longitudinale Wellen entstehen, wenn elastische Längskräfte wirken.
- In Festkörpern können sich Transversal- und Longitudinalwellen ausbreiten.
- In Flüssigkeiten und Gasen können sich nur Längswellen ausbreiten.

Eingenschaften des Ultraschalls

Charakteristiken

Frequenz f > 20 kHz

Wellenlänge λ

in den bildgebenden Geräten: f=2-10~MHz $\lambda=0.77-0.154~\text{mm}$

Frequenzbereiche der Schallwellen:

a. 0 — 20 Hz

Infraschall

b. 20 Hz — 20 kHz

hörbarer Bereich

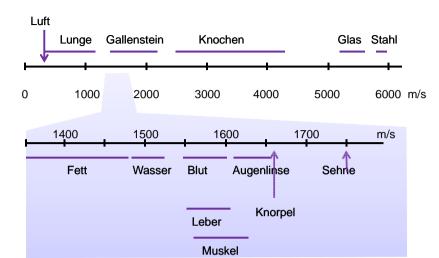
c. 20 kHz — 1 GHz

Ultraschall

d. 1 GHz — 10 THz

Hyperschall

Beispiel:


f = 2 MHz

c = 1540 m/s in Weichteilgeweben

 $\lambda = ?$

5

Ausbreitungsgeschwindigkeit c (m/s)

6

Eingenschaften des Ultraschalls

Ausbreitungsgeschwindigkeit

unabhängig von der Frequenz => keine Dispersion

Stoff	Schallgeschwindigkeit (m/s)	Dichte (kg/m³)
Wasser (20 °C)	1483	998,2
Luft (p_0, T_0)	331	1,293
Fett	1470	970
Knochenmark	1700	970
Muskel	1568	1040
Gehirn	1530	1020
Knochen (kompakt)	3600	1700

Eingenschaften des Ultraschalls

Kompressibilität (x) und Ausbreitungsgeschwindigkeit (c)

$$\kappa = \frac{-\Delta V / V}{\Delta p}$$

$$c = \frac{1}{\sqrt{\rho \kappa}}$$

 ρ - Dichte

Akustische Impedanz (Z) und Ausbreitungsgeschwindigkeit

$$Z = \frac{p}{v} = \frac{p_{\text{max}}}{v_{\text{max}}}$$

 $\nu\,$ - Teilchengeschwindigkeit

$$Z = c \cdot \rho = \sqrt{\frac{\rho}{\kappa}}$$

Eingenschaften des Ultraschalls

Die Schallintensität

$$J = \frac{1}{2Z} \Delta p_{\text{max}}^2$$

Intensität = Energieflußdichte, Leistungsdichte

$$J = \frac{1}{Z} \Delta p_{\text{eff}}^2$$

effektiver Wert: $\Delta p_{\text{eff}}^2 = \Delta p_{\text{max}}^2/2$

$$P_{\rm el} = \frac{1}{Z_{\rm el}} U_{\rm eff}^2$$

elektrische Analogie

Intensität und Gewebeschädigung

Die Schallintensität bei Diagnostik \bar{J} = 0,01 W/cm

 \bar{J} = 0,01 W/cm² = 10 mW/cm² < 100 mW/cm²

Druckschwankung in Muskel:

effektiv ~0,13fache,

maximum ~0,2fache des Atmospherendruckes

Die Schallintensität bei der Therapie \bar{J} = 2,5 W/cm²

Druckschwankung in Muskel:

effektiv ~2fache,

maximum ~3fache des Atmospherendruckes

Vergleich: Hörshwelle $J_0 = 10^{-12} \text{ W/m}^2$

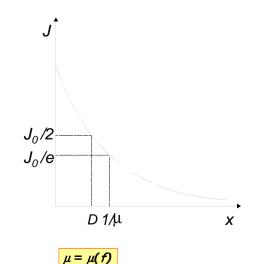
Schmerzgrenze $J = 10 \text{ W/m}^2$

10

Eingenschaften des Ultraschalls

Die Schwächung

Schwächungsgesetz $J = J_0 \cdot e^{-\mu x}$

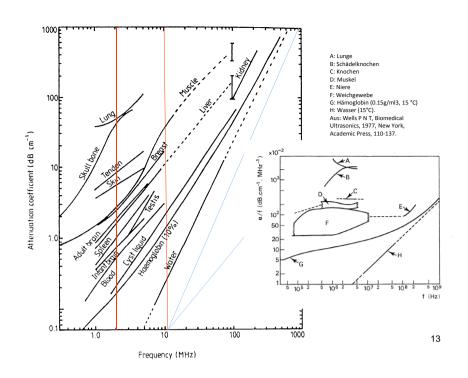

$$\mu = \frac{\ln 2}{D} = \frac{0,693}{D}$$

9

Stoff	D in cm bei f=0,9 MHz	D in cm bei f=2,5 MHz
Fett	7,7	2,8
Knochenmark	7,7	2,8
Muskel	2,7	1,0
Gehirn	3,6	1,3
Knochen	0,2	0,1
Wasser (distilliert)	500	180

Die Schwächung

Dämpfung:


$$\alpha = 10 \cdot \lg \frac{J_0}{J} dB$$

$$\alpha = 10 \cdot \mu \cdot x \cdot \lg e \, dB$$

spezifische Dämpfung:

Für weiche Gewebe: ~1dB/(cm·MHz)

Reflexion

$$R = \frac{J_{refl}}{J_{ein}} = \left(\frac{\rho_1 \cdot c_1 - \rho_2 \cdot c_2}{\rho_1 \cdot c_1 + \rho_2 \cdot c_2}\right)^2$$

$$Z_1 \ll Z_2$$
, $R \approx 1$

Grenzfläche	R
Muskel/Blut	0,0009
Fett/Leber	0,006
Fett/Muskel	0,01
Knochen/Muskel	0,41
Knochen/Fett	0,48
Weichteilgewebe/Luft	0,99

Anpassungsschicht (Koppelmedium): Wasser, Gel, Parafinöl vermindert den Impedanzunterschied zwischen Luft und Haut

optimale Anpassung:

$$Z_{\text{Kopplung}} \approx \sqrt{Z_{\text{Quelle}} \cdot Z_{\text{Haut}}}$$

1

2. Erzeugung des Ultraschalls

- In zwei Schritten:

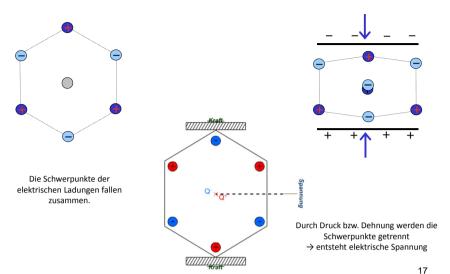
a. Erzeugung sinusförmiger elektrischer Spannung mit hoher Frequenz $f > 20 \ \mathrm{kHz}$

- Sinusoszillator

b. Umwandlung der elektrische Schwingung in mechanische Schwingung

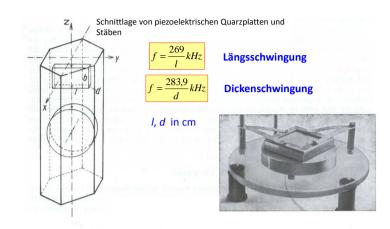
- Wandler (Transducer)

Wandler


Brüder Curie, 1881:

Bei Kristallen mit polaren Achsen (Turmalin, Quarz) treten durch Druck oder Dehnung in bestimmten Richtungen elektrische Ladungen an den Enden der polaren Achsen auf.

 $\mbox{mechanische Schwingung} \rightarrow \mbox{elektrische Schwingung}$ $\mbox{piezoelektrischer Effekt}$


elektrische Schwingung ightarrow mechanische Schwingung reziproker piezoelektrischer Effekt

"Mechanismus" des Piezoeffektes :

Wandler: Schwingquarz

elektrische Schwingung → mechanische Schwingung reziproker piezoelektrischer Effekt

18

Wandler: Schwingquarz

elektrische Schwingung \rightarrow mechanische Schwingung

Bermerkungen:

a.
$$f_{elektrische} = f_{mechanische}$$

b.
$$A_{elektrische} \sim A_{mechanische}$$

c. Umwandlung in beiden Richtungen!

Schwingquarz = Sender/Detektor