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Diffusion 
 

Molecular motions can only be observed indirectly. 

Brownian motion, is the term used to describe the random motion of the 

pollens in a suspension, and is the result of continous collisions with 

otherwise invisible water molecules. 

 

Characteristics of molecular motion 
 

The description of molecular motion is much more complicated in fluid 

phase than in gases, thus we present the basic diffusion laws for gases, 

but the results are applicable under certain conditions to fluids too. 
 

According to the model of the ideal gas the average kinetic energy of a 

single particle: 
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The average time between collisions is denoted by τ, 

and the average distance travelled between two collisions, or the so-called 

mean free path is denoted by l. 

Thus 
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When an external field is appiled, some of the particles’ path is still zig-

zagged, but a unidirectional drift is added to the random motion. (For 

example a portion of gas-particles are ionized and the applied external 

field is electric.)  

Using Newton’s second law (F = ma, Force = mass*acceleration) 

and that  = at, (velocity = acceleration*time) 

the drift speed 
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which is the value of the velocity resulting from a unity of force. 
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Diffusion phenomena, Fick’s experiment 
 

Spreading of particles because of the random thermal motion 

called diffusion. It continues until the distribution of the particles 

is uniform throughout the entire volume. 

 

 

 

 

 

 

 

 

 

 

 

Fick interpreted diffusion along the concept of Brownian motion. 

 

Qualitative description: 
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1. Law of continuity again (in the simplest case) 

 

particle-flux: 
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matter flow rate: 
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 = N/NA amount of particles (mol) (be careful  standing for velocity) 

NA (Avogadro number) 

 

matter flow density:  
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 = J (a)At = J (b)At 
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2. Law of continuity (in generalized form) 

 

In the previous case: 
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If J (a) > J (b) 

there is a net substance influx 

into the space enclosed by a and b 

 

This amount of substance has to 

appear in the given volume (V), 

thus the concentration of the 

substance (c) will grow.  
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and c(t+t) > c(t) 

 

Let a = x and b = x + Δx be very close to each other. 
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3. Fick’s first law 

 

What does the diffusion rate depend on and 

what will be the size of the matter flow density (J)? 
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This is Fick’s first law. The meaning of Δc/Δx is the concentration 

drop of a unit-length, or concentration-gradient.  

The most important message of the law is that the matter flow 

which characterizes the ”strength” of diffusion is proportional to 

the drop in concentration. The proportionality coefficient is the 

called diffusion coefficient. 
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its dimension is: m2/s. 

 
Frictional force acts on a spherical body moving in a fluid: 
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This is the Stokes-Einstein equation. 
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4. Fick’s second law 

(describes the concentration’s spatial and temporal variation) 

 

We use the generalized continuity-equation 
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Let’s replace (Jν) from Fick’s first law: 
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This is Fick’s second law. (See also in the manual: DIFFUSION) 
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Meaning of Fick’s second law 
 

With the aid of numeric methods, 

and the knowledge of all initial 

conditions, the concentration’s 

temporal and spatial alteration can 

be determined with good accuracy. 
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This expression give us the 

concentration a little later (t + Δt) 

time-point, 

if its (spatial) distribution at a time 

point (t) was known. 
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Random-walk problem 

How far does the particle get from 

its initial position, because of the 

thermal motion? 
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(The random-walk problem is sometimes 

called the problem of the ”drunk sailor”. 

The sailor comes out from the pub and sets 

off somewhere, but since his legs do not 

always obey his will, his steps are random. 

Every step is randomly angled to that of 

the previous one. Given these 

circumstances how far does the sailor get 

after a set amount of time? Naturally, we 

do know exactly, because it is not 

determinable, but we can calculate the 

average distance the sailor takes if the 

incident is repeated daily.)  
 

 

Application from textbook (page 240) 
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Osmotic phenomenon 
 

A small-sized, semi-permeable bag, 

filled with sugar dissolved in water is 

placed in a container filled with pure 

water. After a certain time, we can 

observe the bag swelling, and that 

ouside of it in the container the water 

remains pure, while the solution in 

the bag has been diluted. 
 

This unidirectional matter flow, 

which takes place by means of 

diffusion, is called osmosis.  
 

5. van t’Hoff law: cRTp osmotic . 
 

If osmotic pressure is equal in two 

different solutions, we call them 

isotonic solutions. 
 

 

 

 


