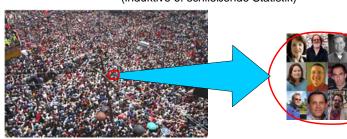
Statistische Schätzungen,

László Smeller

Analytische Statistik

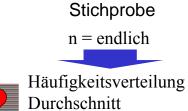
(induktive o. schließende Statistik)



Population

N = "unendlich"

Theoretische Verteilung Erwartungswert Theoretische Streuung



Standardabweichung

Statistische Schätzungen

Aufgabe der Schätztheorie

Aus einer Stichprobe Schätzwerte für

- Wahrscheinlichkeiten
- Erwartungswert
- Streuung
- oder andere Parametern einer Verteilung

zu ermitteln.

Typen der Schätzungen:

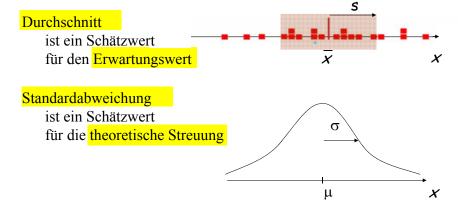
- Punktschätzung
- Intervallschätzung

Punktschätzungen

Wir wollen jetzt die Parameter einer Verteilung (z.B.: μ , σ) aus den konkreten Werten $x_1,...x_n$ einer Stichprobe "möglichst gut" bestimmen, d.h. einen "Näherungswert" errechnen.

Kriterien:	$\xrightarrow{\qquad} X$	
Erwartungstreue	Erwartungswert der	
(unverzerrt)	Schätzwerte = zu	
	schätzender Parameter	
Konsistenz	n ↑ bessere Schätzung	
Effizienz (wirksam)	kleine Streuung	
Exhaustivität	berücksichtigt alle	
(erschöpfend)	Informationen	

Punktschätzungen



Punktschätzungen sagen nichts über die Genauigkeit bzw. Sicherheit der Schätzung

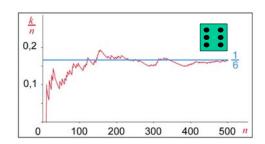
Punktschätzungen

Der Parameter wird mit einem Wert geschätzt.

Relative Häufigkeit

ist ein Schätzwert für die Wahrscheinlichkeit

Siehe Definition der statistischen Wahrscheinlichkeit!



Intervallschätzungen

Intervallschätzung oder Konfidenzschätzung gibt zu einer vorgewählten Sicherheitswahrscheinlichkeit γ , (Konfidenzniveau) ein Intervall (c_1,c_2) an, in dem der unbekannte Parameter $(zB.\ \mu\ oder\ \sigma)$ mit einer Wahrscheinlichkeit von mindestens γ liegt.

Zb.: Erwartungswert der Pulszahl ist bei 95% Konfidenzniveau: (74±6) ¹/_{Min}

α=1-γ Irrtumswahrscheinlichkeit

Intervallschätzungen

Wie große γ Sicherheitswahrscheinlichkeit (Konfidenzniveau) soll gewählt werden?

Wichtige Faktoren:

- Streuung der Daten
- Stichprobenumfang
- Größe der Schaden bei einer falschen Schätzung

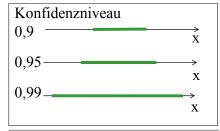
Sozialwissenschaft γ =0,9

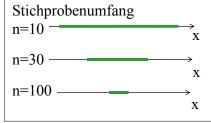
Medizin γ =0,95

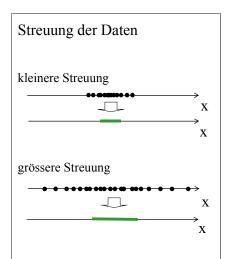
Technik γ=0,99

9

Einfluss des Konfidenzniveaus, der Streuung und des Stichprobenumfanges auf die Breite des Konfidenzintervalles







Konfidenzintervall für den Erwartungswert

Wir wollen eine Intervallschätzung für den Erwartungswert (μ) einer Zufallsgröße (zB: Körperhöhe) geben.

Gedankenexperiment:

Nehmen wir jetzt viele Stichproben, (zB: viele Studentengruppen) alle mit gleichem Stichprobenumfang n.

 \bar{x}_i ist der Durchschnitt der *i*-ten Stichprobe

 \overline{x}_1

 \overline{x}_2

 \overline{x}_3

 $\overline{x}_{\!\scriptscriptstyle \Delta}$

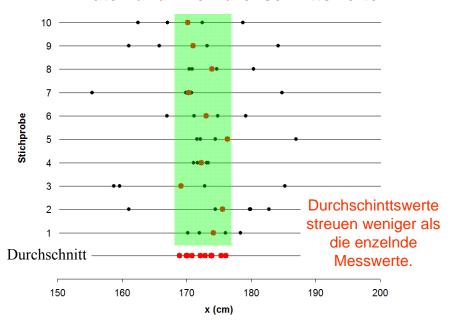
Konfidenzintervall für den Erwartungswert

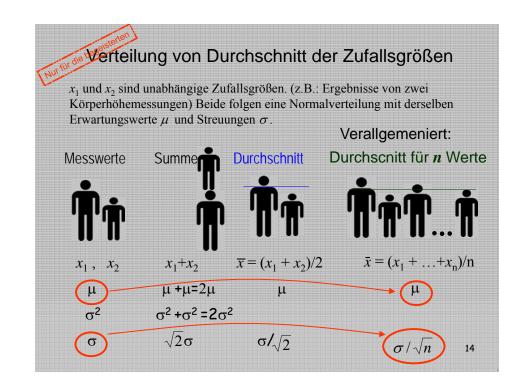
Wie sieht die Verteilung von \bar{x}_i Werte aus?

Zentraler Grenzwertsatz: bei genug hohen *n* die Verteilung der Durchschinttswerte (\bar{x}_i) ist eine Normalverteilung.

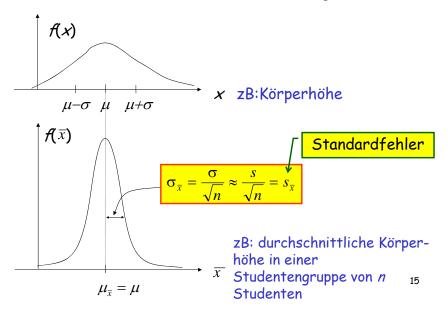
Lage ($\mu_{\bar{\tau}}$) und Breite ($\sigma_{\bar{\tau}}$) der Verteilung der Durchschnittswerte (\bar{x}_i)?

Daten und ihre Durchschnittswerte

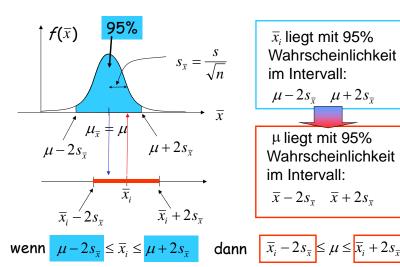




Konfidenzintervall für den Erwartungswert



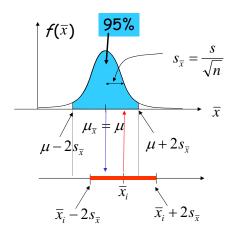
Konfidenzintervall für den Erwartungswert



95% Wahrsch.

95% Wahrsch.

Konfidenzintervall für den Erwartungswert



 $egin{align*} & \overline{x}_i \text{ liegt mit 5\%} \\ & \text{Wahrscheinlichkeit} \\ & \text{im Intervall} \\ & \mu - 2s_{\overline{x}} & \mu + 2s_{\overline{x}} \\ & \text{nicht!} \\ \end{aligned}$

 μ liegt mit 5% Wahrscheinlichkeit im Intervall $\overline{x}-2s_{\overline{x}}$ $\overline{x}+2s_{\overline{x}}$ nicht!

19

$$\overline{x}_i \leq \mu - 2s_{\overline{x}} \text{ oder } \mu + 2s_{\overline{x}} \leq \overline{x}_i \quad \Longrightarrow \quad \mu \leq \overline{x}_i - 2s_{\overline{x}} \text{ oder } \overline{x}_i + 2s_{\overline{x}} \leq \mu$$
 5% Wahrsch.

Konfidenzintervall für den Erwartungswert

In dem Intervall $\overline{x}-2s_{\overline{x}}, \ \overline{x}+2s_{\overline{x}}$ (Konfidenzintervall) liegt der Erwartungswert (μ) mit 95% Wahrscheinlichkeit

Eine ähnliche Ableitung gibt: μ liegt -mit 68% Wahrscheinlichkeit im Intervall: $\overline{x} - s_{\overline{y}}, \ \overline{x} + s_{\overline{y}}$

- mit 99,7% Wahrscheinlichkeit im Intervall:

$$\overline{x} - 3s_{\overline{x}}, \ \overline{x} + 3s_{\overline{x}}$$

Je größer ist die Sicherheitswahrscheinlichkeit desto breiter ist das Konfidenzintervall!

Bemerkung: wenn $n \rightarrow \infty$ dann $s_{\bar{x}} \rightarrow 0$

18

Bestimmung des Stichprobenumfanges

Welcher Stichprobenumfang ist notwendig zu einer bestimmten Genauigkeit? (z.B.: Körperhöhe mit ±1cm "Genauigkeit" bei 95% Konfidenzniveau)

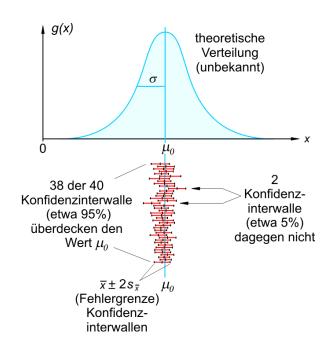
$$2s_{\overline{x}} = 1 \text{ cm} \implies s_{\overline{x}} = 0.5 \text{ cm}$$

 $s_{\overline{x}} = \frac{s}{\sqrt{n}} \implies s_{\overline{x}}^2 = \frac{s^2}{n} \implies n = \frac{s^2}{s_{\overline{x}}^2}$

s = ? s kann aus einer kleineren Stichprobe geschätzt werden.

Z.B.: Körperhöhe in einer Studentengruppe (20 St.): s = 8,3 cm

$$n = \frac{s^2}{s_-^2} = \frac{8.3^2 \text{ cm}^2}{0.5^2 \text{ cm}^2} \approx 276$$



Konfidenzintervall für Quotienten (Wahrscheinlichkeit)

Zwei Möglichkeiten: (E/E, z.B.: Raucher/Nichtraucher)

Binomialverteilung

E kommt mit einer Wahrscheinlichkeit von p vor.

Stichprobenumfang: n

In einem Versuch E kommt k –mal vor (k aus n Personen sind Raucher)

Die relative Häufigkeit h=k/n ist ein Schätzwert für p (Punktschätzung.)

k folgt eine Binomialverteilung mit einem Erwartungswert von pn

Theoretische Streuung der Binomialverteilung: $\sigma_k = \sqrt{np(1-p)}$ (Streuung von k)

p wird mit der relativen Häufigkeit geschätzt: $\sigma_k \approx \sqrt{nh(1-h)}$

Weil $p \approx h = k/n$, Streuung von $p : \sigma = \sigma_k/n = \sqrt{\frac{nh(1-h)}{n}} / n = \sqrt{\frac{h(1-h)/n}{n}}$

Analog zu $\overline{x}\pm 2\sigma$

p befindet sich mit 95 % Wahrscheinlichkeit in:

 $h \pm 2\sqrt{h (1-h)/n}$ (95% Konfidenzniveau)

zB.: 20 Raucher aus 100 \rightarrow P(Rauchen)= 0,2±2 $\sqrt{0,2\cdot0,8/100}$ = 0,2 ± 0,08 = =(20±8)%

Zusammenfassung der Schätzungen

Punktsätzungen:

Stich- probe	Grund- gesamtheit
- - - -	→ μ
s —	→ σ
n	8
h —	→ <i>P</i>

Intervallschätzung mit 95% Konfidenzniveau

für den Erwartunswert (μ) :

$$\overline{x} \pm 2s_{\overline{x}}$$

für die Wahrscheinlichkeit (P):

$$h \pm 2\sqrt{h \; (1-h)/n)}$$

22

