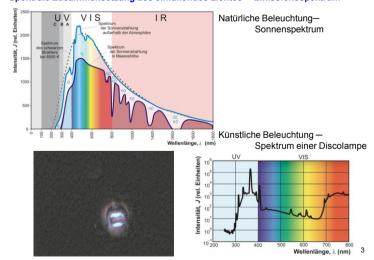
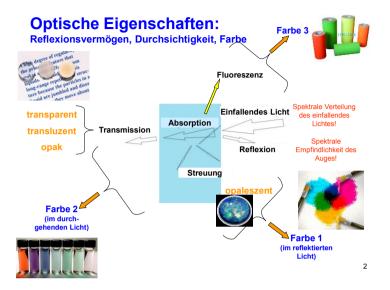


Physikalische Grundlagen der zahnärztlichen Materialkunde

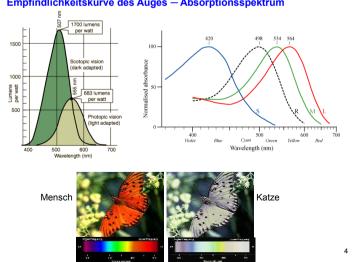
11.

Optische Eigenschaften. Zusammenfassung

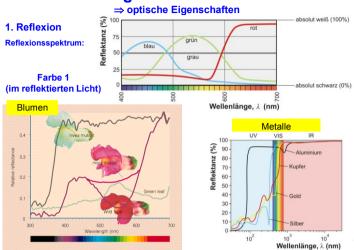

Kapitel des Lehrbuches: 20, 21

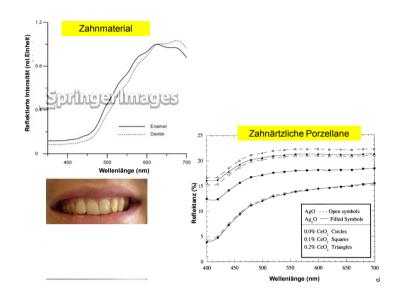

Schwerpunkte:

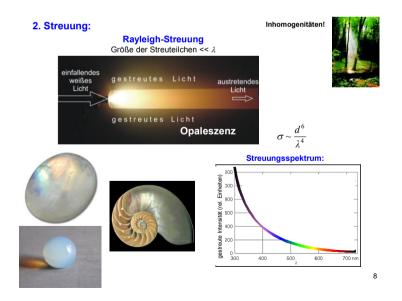
- ❖ Wie entsteht die Farbe?
- Vergleich der Materialklassen


Hausaufgaben: 5. Abschnitt: 16, 17, 19, 20, 27, 31

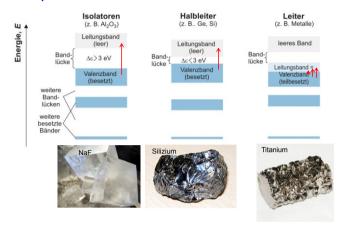
Spektrale Zusammensetzung des einfallendes Lichtes - Emissionsspektrum



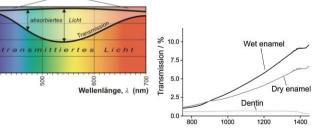

Empfindlichkeitskurve des Auges - Absorptionsspektrum



Wechselwirkungen mit der Materie

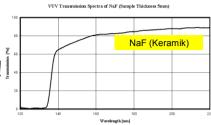

Dental resin composite	Manufact urer	Organic matrix		article type	Filler pa size (µm								
Filtek Silorane		Silorane	Quartz f fluoride	filler, yttrium	0.1–2								
Filtek Supreme XT		BIS-GMA, UDMA, TEGDMA and BIS-EMA	Zirconium-Silica agglomerate, highly dispersed silica		0.6–1.4								
Filtek Z250		Bis-GMA, UDMA and Bis- EMA	Zirconium, Silica		0.01–3.5	5							
Z100		Bis-GMA and TEGDMA	Zirconium, Silica		0.01–3.5	5							
Gradia Direct		UDMA, dimethacrylate co- monomers	Silica and pre- polymerized fillers		0.007–1	.7							
		(na						Verbundwerkstoffe (nach der Polymerisation)					
			0,6 -		•	*	•	*	*		*	*	
			0,3		•				_				•
		Ġ	0,2	•									
			0,1 -	ž						Arte Evo Gra	ceram		
			0,0 +	400		500	λ	6 (nm)	00		700	•	8

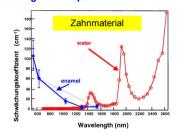
3. Absorption:

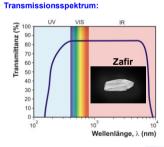

5. Transmission:

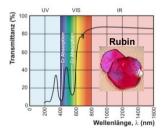
9

degree of regular... durchsichtig undurchsichtig ture because the particles in a ture because the particle and disor

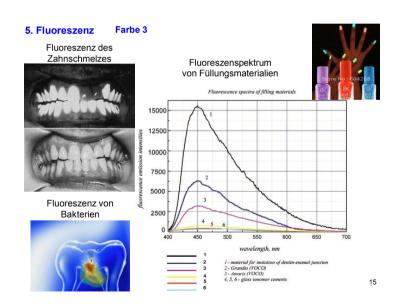



Wavelength, λ/ nm

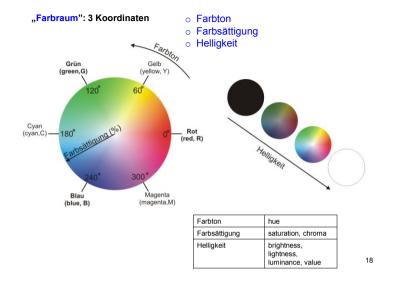

Absorptionsspektrum:

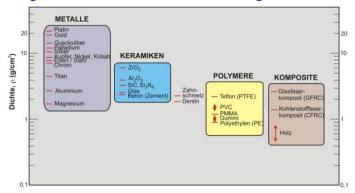


4. Schwächung = Streuung + Absorption:

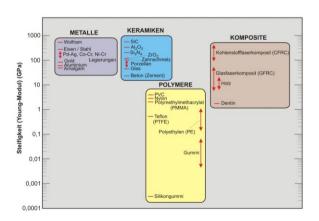

Farbe 2 (im durchtretenden Licht)

12


DIFOTI® (Digital Imaging Fiber-Optic Trans-Illumination) Plandplace Image Relay Mirror Sand transmittellight to the CDI maging curren in the Individues Window Place Disposable Mouth Place Disposable Mouth

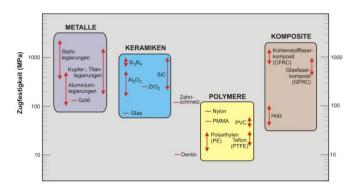


Farbe Farbe bunte Farbe unbunte Farbe Weiß Grau Mischfarben Grundfarbe Schwarz Urfarben Sekundärfarben • 1 – Rot • 2 – Gelb • 3 – Grün 4 – Cyan • 5 – Blau • 6 - Magenta

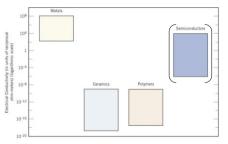

Vergleichende Zusammenfassung

17

19


Dichte: Komposite, Polymere < Keramiken < Metalle

Steifigkeit: Polymere < Komposite < Keramiken, Metalle

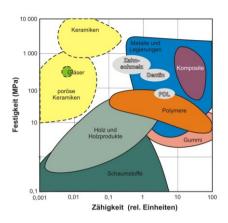

Elastische Rückstellung: Keramiken < Metalle < Komposite < Polymere

Duktilität: Keramiken < Metalle < Komposite < Polymere

Zugfestigkeit: Polymere < Komposite, Keramiken < Metalle

Druckfestigkeit: Polymere < Komposite, Keramiken, Metalle

Elektrische Leitfähigkeit: Keramiken, Komposite, Polymere < Metalle


Wärmeleitfähigkeit: Keramiken, Komposite, Polymere < Metalle

Schmelzpunkt: Polymere < Komposite < Metalle < Keramiken

Wärmeausdehnungskoeffizient: Keramiken < Polymere, Komposite, Metalle

Reflektanz: Keramiken, Komposite, Polymere < Metalle

Transmittanz: Metalle < Komposite < Polymere, Keramiken

Zähigkeit: Keramiken < Polymere, Komposite, Metalle

Härte: Polymere < Komposite < Metalle < Keramiken

22

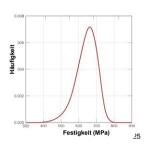
Im Allgemeinen:

fest

21

23

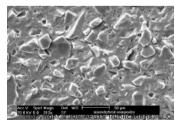
- hohe Dichte
- steif
- stark
- duktil (bearbeitungsfähig)
- zäh (Zähbruch)
- hart
- niedrige spez. Wärmekap.
- guter Wärmeleiter
- wärmeschockbeständig
- guter elektr. Leiter
- opak, metallfarbig
- geringe Korrosionsbeständigkeit



Im Allgemeinen:

- fest
- mittlere Dichte
- steif
- stark (beim Zug nur mittelmäßig)
- wenig bearbeitungsfähig $\sigma_{\text{Zug}} < \sigma_{\text{Druck}}$
- brüchig (Sprödbruch)
- "empfindlich gegen Risse"
- hart
- mittlere spez. Wärmekapazität
- Wärmeisolator
- geringe Wärmeschockbeständigkeit
- · elektr. Isolator
- vielfältige optische Eigenschaften
- korrosionsbeständig

Komposite (zahnärztliche)


Im Allgemeinen:

- fest
- niedrige mittlere Dichte
- mittelmäßig steif elastisch
- stark
- duktil
- zäh
- hart mittelmäßig hart
- mittlere spez. Wärmekapazität
- Wärmeisolator
- mittlere Wärmeschockbeständigkeit
- · elektr. Isolator
- vielfältige und veränderliche optische Eigenschaften
- korrosionsbeständig

Wichtige Faktoren:

- Zusammensetzung
- Teilchengröße

→ Mikrohybrid- → Nanohybrid-Komposite

mittelmäßig zäh - spröd

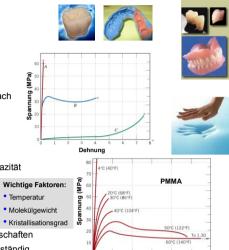
• mittelmäßig hart - weich

• wenig steif - elastisch

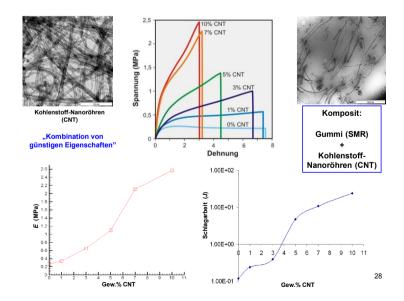
Polymere

• flüssig oder fest

kleine Dichte


Im Allgemeinen:

duktil


- viskoelastisch
- mittlere spez. Wärmekapazität

mittelmäßig stark - schwach

- Wärmeisolator
- mittlere Wärmeschockbeständigkeit
- elektr. Isolator
- vielfältige optische Eigenschaften
- mittelmäßig korrosionsbeständig

Dehnung

