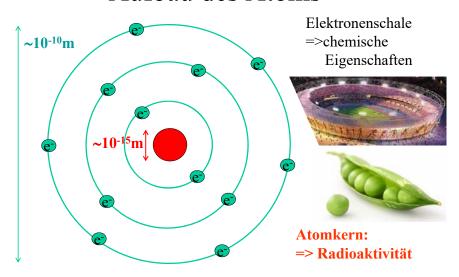


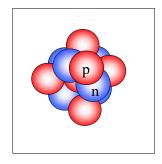
Warum ist es interessant?

Medizinische Anwendungen der radioaktiven Strahlungen:

- -- Diagnostik (Isotopendiagnostik)
- -- Therapie (Strahlentherapie)


Pharmazeutische Anwendungen:

-- Pharmakokinetische Untersuchungen



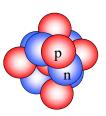
Aufbau des Atoms

Aufbau des Atomkernes

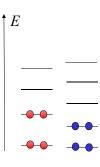
	Ladung	Masse
Proton	+1 e	1 a.u.
Neutron	0	1 a.u.

A (Massenzahl) = Protonenzahl + Neutronenzahl
Z (Ordnungszahl) = Protonenzahl

99 Nukleon: 43 Proton és 56 Neutron


99 Nukleon: 43 Proton és 56 Neutron

Stabilität des Atomkernes

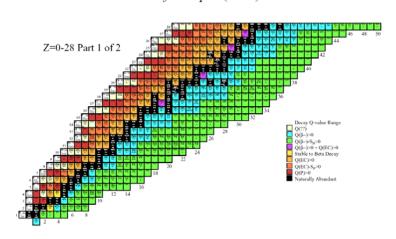

Coulomb-Kraft → Abstoßung zw. Protonen → destabilisiert Kernkraft → Ladungsunabhängig → stabilisiert

kurze Reichweite

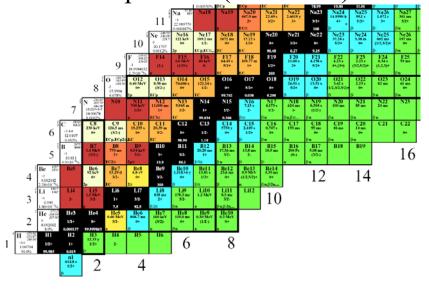
Diskrete Energieniveaus

Typische Übergangsenergieverte: einige MeV

Isotope


Atomkerne mit gleicher Ordnungszahl aber unterschiedlicher Massenzahl => gleiche Protonenzahl unterschiedliche Neutronenzahl Varianten des gleichen Elementes => Chemische Eigenschaften sind identisch!

Pl: ${}^{18}_{9}\mathbf{F}$ ${}^{19}_{9}\mathbf{F}$ ${}^{20}_{9}\mathbf{F}$ instabil (radioaktiv) stabil (radioaktiv)


Isotop <-> radioaktives Isotop

Isotoptabelle

Table of Isotopes (1998)

Isotoptabelle (Abschnitt)

Zerfalle und radioaktive Strahlungen

 α - Zerfall α - Teilchen = ${}^{4}_{2}$ He Atomkern

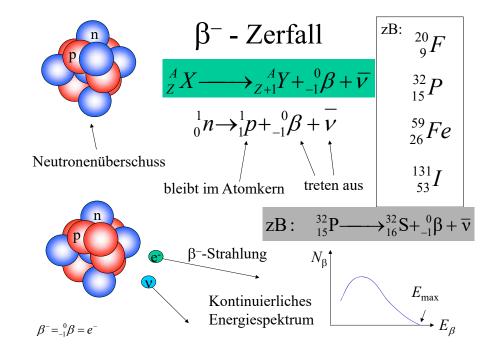
 β -Zerfall: β β Teilchen = Elektron β Teilchen = Positron

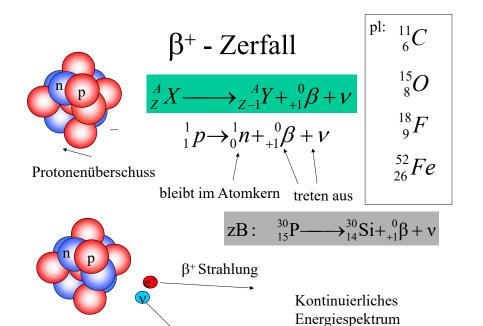
K-Einfang charakteristische Röntgenstrahlung

Isomere Kernumwandlung γ-Strahlung

Massenzahl ↓4 Ordnungszahl ↓2

$$_{Z}^{A}X\longrightarrow_{Z-2}^{A-4}Y+_{2}^{4}\alpha$$

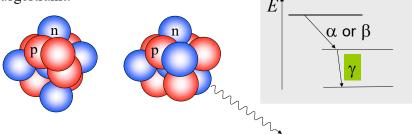

α - Zerfall


Hierbei treten ⁴He Atomkerne aus dem Atomkern aus. Damit erhöht sich die Stabilität des Kernes

zB.:
$${}^{226}_{88}$$
Ra $\longrightarrow {}^{222}_{86}$ Rn $+{}^{4}_{2}\alpha$

Enenergiespektrum: Linienspektrum $E_{\alpha} \sim \text{MeV}$

 $\longrightarrow E_{0}$



Promte γ-Strahlung

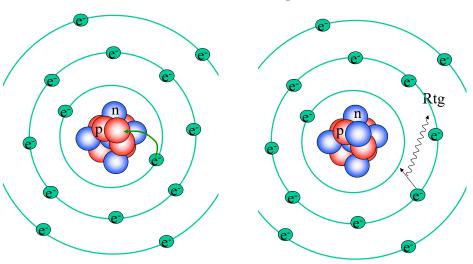
Nach dem Zerfall kann die Anordnung der Nukleonen energetisch ungünstig sein

Umordnen der Nukleonen: ein niedrigeres Energieniveau wird erreicht, (z.B. weniger coulombsche Abstoßung) => die überflüssige Energie wird in Form von γ-Strahlung ausgestrahlt.

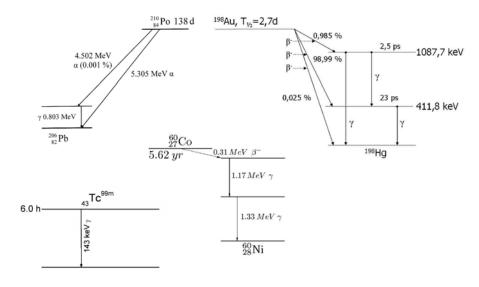
Isomere Kernumwandlung

Wenn die Umordnen nicht einfach vor sich gehen kann, entsteht γ -Strahlung nicht sofort , sondern erst nach einer gut messbaren Zeit.

Die zwei Prozesse (α -oder β -Zerfall, γ -Strahlungsemission) können separiert werden.


Man kann ein reines γ -strahlen Isotop herstellen!

=> Isotopendiagnostik


zB:
$$^{99\text{m}}\text{Tc}$$
 $^{99}_{42}Mo \xrightarrow{\beta^-} ^{99m}_{43}Tc \xrightarrow{\gamma} ^{99}_{43}Tc$

K-Einfang

Protonenzahl u. Neutronenzahl sind unverändert!

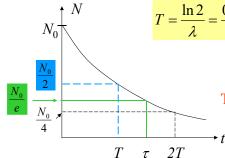
Beispiele

Aktivität

$$A = \left| \frac{dN}{dt} \right| \quad \left(= \left| \frac{\Delta N}{\Delta t} \right| \right)$$

N = Anzahl der Zerfallsfähigen Atomkerne

t = Zeit


ΔN die Anzahl der während Δt Zeit zerfallenen Atomkerne

Einheit: Becquerel Bq 1 Bq= 1 Zerfall/sec

Bq, kBq, MBq, GBq, TBq

Zerfallsgesetz

$$N(t) = N_0 e^{-\lambda t} = N_0 2^{-\frac{t}{T}}$$

 $= \frac{0,693}{\lambda}$ λ Zerfallskonstante T Halbwertszeit

Theoretisch erreicht es nie 0!

Zerfallsgesetz

 $\Delta N \sim N$

N Anzahl der zerfallsfächigen Kerne

 $\frac{dN}{dt} = -\lambda N$

λ: Zerfallskonstante Zerfallswahrscheinlichkeit[1/s]

 $1/\lambda = \tau$ Zeit! durchschinittlicher Lebensdauer

Differentialgleichung

Lösung:

$$N(t) = N_0 e^{-\lambda t}$$

Exponentialfunktion!

N₀ Anzahl der zerfallsfächigen Kerne am Anfang (*t*=0)

Beispiel

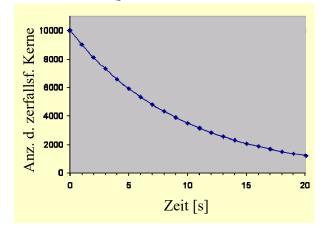
• Sei $N_0 = 10000 \lambda = 0.1^{-1}/_{S}$

• nach 1 sec: 9000 (10000x0,1=1000 sind zerfallen)

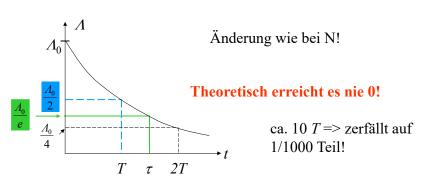
• nach 2 sec: 8100 (9000x0,1=900 sind zerfallen)

• nach 3 sec: 7290 (8100x0,1=810 sind zerfallen)

• nach 4 sec: 6561 (7290x0,1=729 sind zerfallen)



Beispiel


• Sei
$$N_0 = 10000$$
 $\lambda = 0,1^{-1}/_{S}$

- 1 sec 9000
- 2 sec 8100
- 3 sec 7290
- 4 sec 6561
-

Zeitliche Änderung der Aktivität

$$A(t) = A_0 e^{-\lambda t} = A_0 2^{-\frac{t}{T}}$$

Einige Beispiele für Halbwertszeit

²³² Th	$1,4\cdot 10^{10} \mathrm{J}$
238 U	4,5 ·10 ⁹ J
40 K	1,3 ⋅10 ⁹ J
¹⁴ C	5736 J
¹³⁷ Cs	30 J
³ H	12,3 J

Nicht auswending lernen!

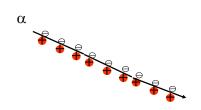
⁶⁰ Co	5,3 J
⁵⁹ Fe	1,5 M
⁵⁶ Cr	1 M (28 T)
131	8 T
^{99m} Tc	6 h
¹⁸ F	110 min
¹¹ C	20 min
¹⁵ O	2 min
²²² Th	2,8 ms

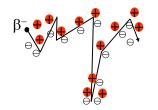
Teilchenenergie

Gemessen in Elektronenvolt (eV).

 $eV = Ladung eines Elektrons \times 1 Volt = 1,6 10^{-19} J$

Typische Teilchenenergiewerte (die bei Kernumwandlungen freigesetzte Enerie) bewegen sich in **MeV** Grössenordnungen.

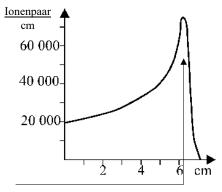

 α und β : $E = E_{kin}$ je höher ist die Teichenenergie desto größer Reichweite


Absorption von radioaktiven Strahlungen

 $\begin{array}{c} \alpha \\ \beta^+ \\ \beta^- \end{array} \right\} \quad \text{haben elektrische Ladung} \\ \gamma \\ Rtg \end{array} \quad \text{ungeladene Teilcehen (elektromagnetische Strahlung)}$

Schwächung der geladenen Teilchen

Ionisieren: ihre Energie wird auf einem bestimmten Weg verbraucht **Reichweite**



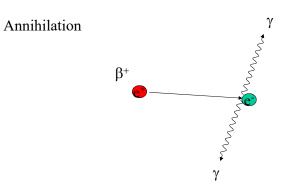
Abstand

Lineare Energieübertragung (LET, Linear Energy Transfer)

LET = (lineare Ionendichte) · (zur Ionisation notwendige Energie)

Lineare Ionendichte für ein α -Teilchen in Luft

27


Bragg Spitze

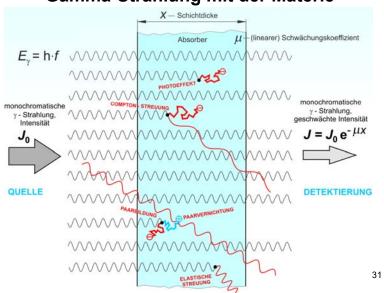
Reichweite

 α -Teichen
in Luft einige cm in Luft m
in Gewebe 0,01-0,1 mm in Gewebe cm

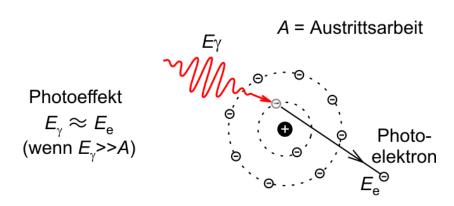
Abstand

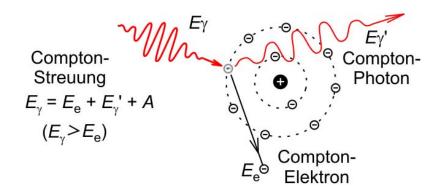
β^+ -Strahlung

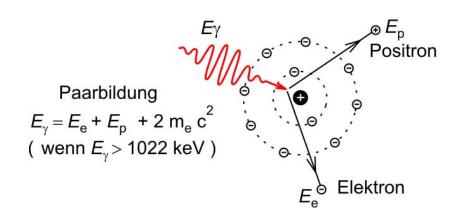
Medizinische Anwendung: Positron Emisionstomographie (PET)


Einsteinsche Formel:

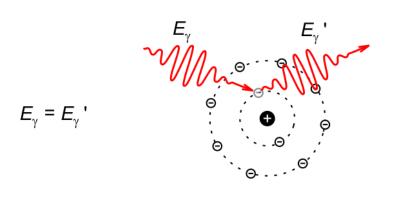
$$E=mc^2$$


Energie - Masse Equivalenz!

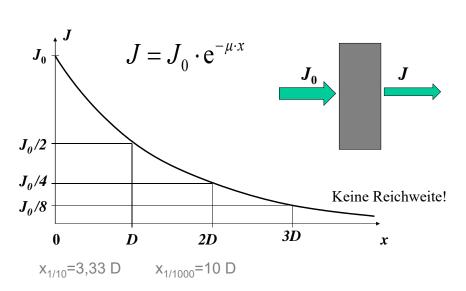

Wechselwirkung der Röntgen- und Gamma-Strahlung mit der Materie


Photoelektrischer Effekt

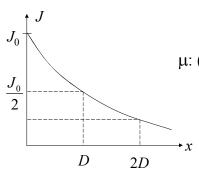
Compton Effekt



Paarbildung



34


Elastische Streuung

Schwächung der γ- und Röntgenstrahlung

33

$$J = J_0 e^{-\mu x}$$

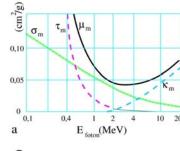
μ: (linearer) Schwächungskoeffizient

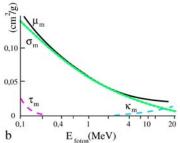
Maßeinheit: 1/m, 1/cm

$$\delta = \frac{1}{\mu} \quad \text{"Eindringstiefe"}$$

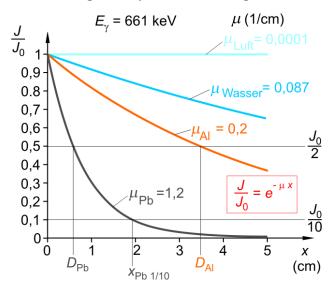
Die Intensität sinkt auf den e-ten Teil des Anfangswertes (≈ 37%)

 $\mu(Stoffart, Dichte, Energie der Strahlung) = \mu(Stoffart, \rho, E_{foton}) \sim \rho$


$$\mu_{m} = \frac{\mu}{\rho} \qquad \text{Massenschwächungskoeffizient} \\ \qquad \qquad \text{Maßeinheit: cm}^{2}/g$$


Massenschwächungskoeffizient:

$$\mu_m = \frac{\mu}{\rho}$$


$$\mu_{\mathrm{m}} = \tau_{\mathrm{m}} + \sigma_{\mathrm{m}} + \kappa_{\mathrm{m}}$$

$$\tau_{\rm m} = c\lambda^3 Z^3$$

Schwächung der γ- und Röntgenstrahlung

38