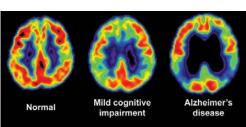
Medizinische bildgebende Verfahren

Spezielle Verfahren der medizinischen bildgebenden Techniken Vergleich der bildgebenden Techniken

L. Smeller

- Molekulare Bildgebung
- Erforschung physiologischer Prozesse oder Diagnose von Krankheiten
- auf molekularer Ebene
- mittels bildgebender Verfahren
- in vivo.


- Molekulare Bildgebung.
- Optische Verfahren (OCT).
- Funktionelle bildgebende Verfahren.
- Multimodale Techniken: SPET-XCT, PET-MRI: Die Korrelation der funktionellen und morphologischen Informationen.
- Navigation, Bildsegmentation, Bildregistration.

Molekulare Bildgebung

Bestimmte Krankheiten auf molekulare Abnormalitäten zurückzuführen

Molekulare Signaturen von Krankheiten zu detektieren und für die medizinische Diagnose zu nutzen

Frühdiagnostik
(häufig können die
Symptomen nur
später erkennt
werden)

Signalgebendes Molekül oder Atom

Zielfindungseinheit

das bildgebende Verfahren die zu detektierenden molekularen Prozesse (Krankheitspezifisch)

zB: FDG (18Fluordesoxyglucose,)

¹⁸F Isotop Desoxyglukose

Radioaktive Isotope

(SPECT, PET)

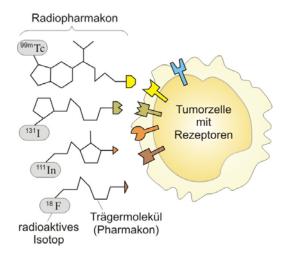
Fluorophor (Fluoreszenzfarbstoff)

(Optische, akustische Methoden)

Gd, Fe, Eu, Ln (MNR)

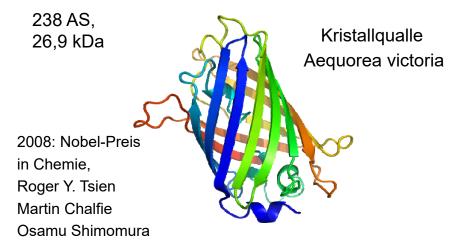
Kleine Moleküle

Peptide

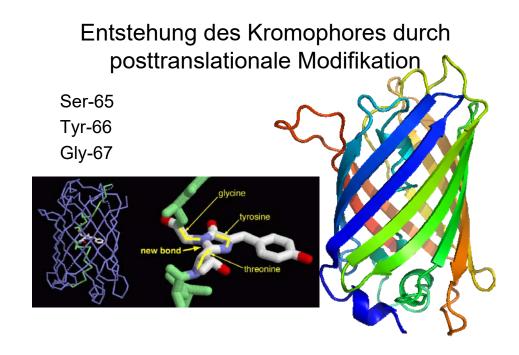

Eiweisse

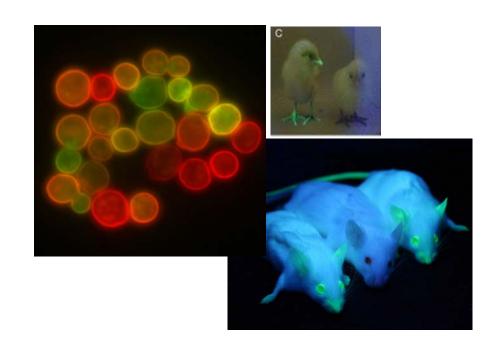
Antikörper

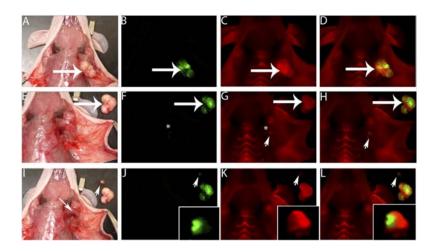
Nanopartikeln...


Molecular imaging & therapy Theranostics Cancer diagnosed Targeting medication Homing on tumor Therapy Killing cancer cells

Radiopharmaka

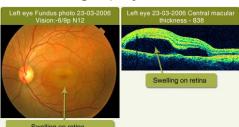

Lumineszenzbasierende Bildgebung

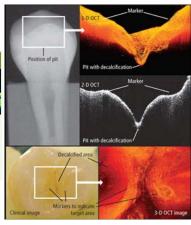

GFP: Grün fluoreszierendes Protein

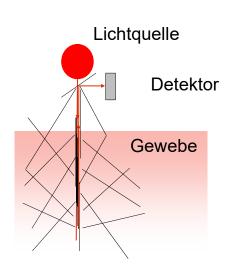

Kristallqualle
Aequorea victoria

2008: Nobel-Preis
in Chemie,
Roger Y. Tsien
Martin Chalfie
Osamu Shimomura

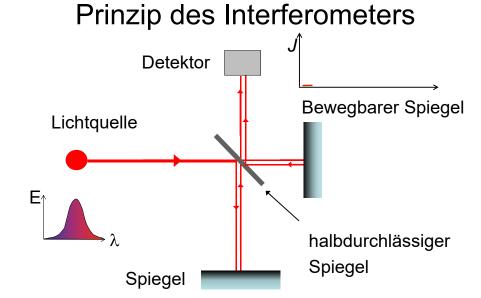
ACPPs delineate tumor at the margin of resection.

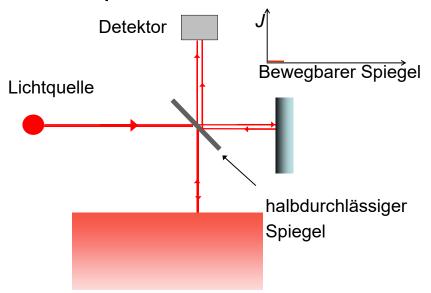

©2010 by National Academy of Sciences

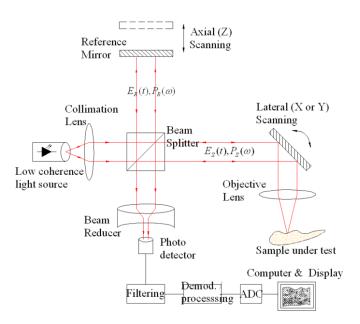

Nguyen Q T et al. PNAS 2010;107:4317-4322

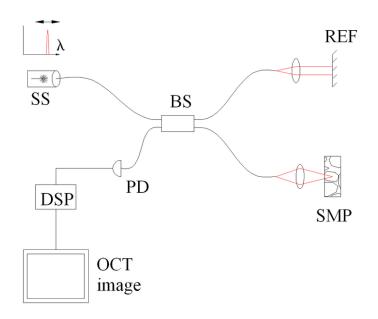

PNAS

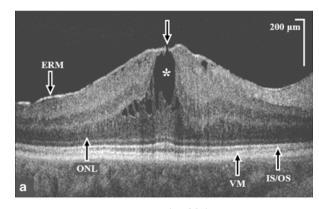
OCT


- Optische Kohärenztomografie
- Optical Coherence Tomography






Problem: Streulicht stört die Abbildung!


Prinzip des Interferometers

Beispiel:

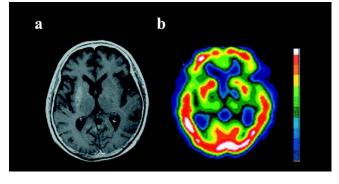
High-resolution Fourier-domain optical coherence tomography (FD-OCT) B-scan macular images through the fovea of eyes with idiopathic epiretinal membrane (ERM). (a) High-resolution FD-OCT image through the fovea of an eye with BCVA of 20/20, (group 1) showing a lamellar hole (white arrow) with cystoid spaces (white asterisk) in the outer nuclear layer (ONL), and a normal inner segment-outer segment (IS/OS) junction of the photoreceptor layer. Central foveal thickness was 229 μm on FD-OCT, whereas central macular thickness on Stratus OCT was 408 μm .

Eye (2011) 25, 775–783; doi:10.1038/eye.2011.55; published online 25 March 2011

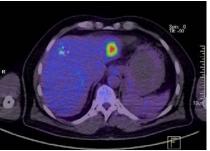
Fourier-domain optical coherence tomography of eyes with idiopathic epiretinal membrane: correlation between macular morphology and visual function

S Pilli¹, P Lim¹, R J Zawadzki¹, S S Choi¹, J S Werner¹ and S S Park¹

Eigenschaften der OCT

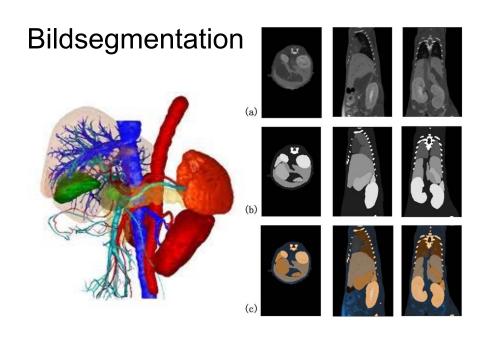

Auflösung: Mikrometer Eindringtiefe: Millimeter

Bildart: direkt tomographisches Bild


Multimodale Techniken

- PET-CT
- SPECT-CT
- PET-MRI
- Funktionale anatomische Aufnahmen

MRI-SPECT



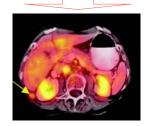
PET-CT

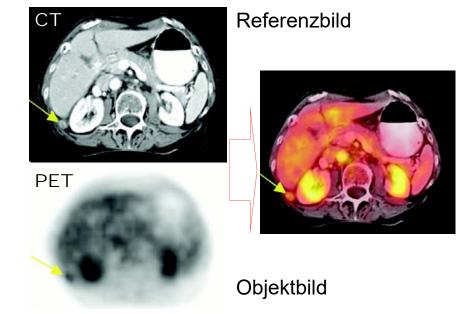
Bildsegmentation

Die Erzeugung von inhaltlich zusammenhängenden Regionen durch Zusammenfassung benachbarter Pixel oder Voxel entsprechend einem bestimmten Homogenitätskriterium

Bildregistration

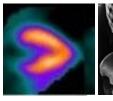
Bildregistrierung:


zwei oder mehrere Bilder


desselben Objekts,

in Übereinstimmung miteinander zu bringen

CT MRI PET SPECT



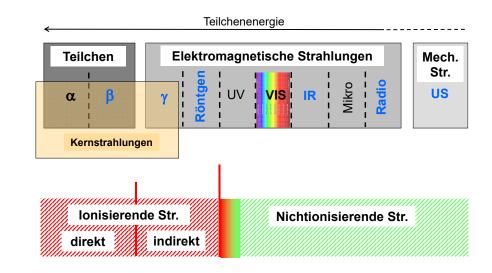
Schritte der Bildregistration

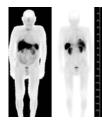
- Merkmalsextraktion: Aus den zu registrierenden Bildern werden Merkmale, wie z. B. Ecken, Kanten, Konturen oder ähnliches manuell oder automatisch detektiert.
- Merkmalsanpassung: Die Korrespondenz der extrahierten Merkmalspunkte wird hergestellt.
- Transformation: Das Objektbild wird mit der im vorherigen Schritt berechneten Umbildung transformiert. Hierbei kommen auch Interpolationstechniken zum Einsatz.

Zusammenfassung

Vergleich der bildgebenden Verfahren



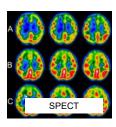



Verwendete Strahlungen

30

Bildtyp:

Summationsbild



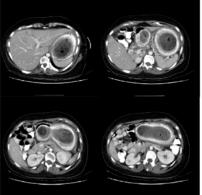
Schichtbild = Tomogramm (T)

- direkt gemessenes Tomogramm
- berechnetes Tomogramm

Bildinfo:

morphologisch (M) funktionell (F)

Röntgendiagnostik gewöhnliche Durchleuchtung


Verwendete Strahlung	e.m. Strahlung
	Röntgen
Prinzip	Unterschiedliche Schwächung der Rtg- Strahlen in verschie- denen Körperteilen
Dargestellte phys. Größe	durchdringende Strahlungsintensität
Bildtyp	Summationsbild
Information	morphologisch
Vorteile	hohe Auflösung, (<mm) schnell</mm)
Nachteile	Strahlenbelastung, Summ. B., schwacher Weichteilkontrast

Röntgendiagnostik Computertomographie

Verwendete	e.m. Strahlung
Strahlung	Röntgen
Prinzip	Unterschiedliche Schwächung der Rtg- Strahlen in verschie- denen Körperteilen
Dargestellte phys. Größe	Schwächungskoeffizient
Bildtyp	berechnetes Tomogramm
Information	morphologisch
Vorteile	hohe Auflösung, (<mm) 3D, schnell</mm)
Nachteile	Strahlenbelastung, schwacher Weichteilkontrast

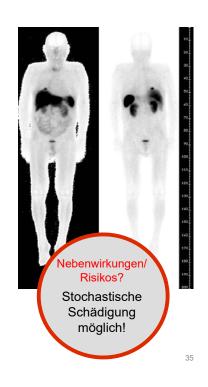
Nebenwirkungen/ Risikos?

Stochastische
Schädigung
möglich!

33

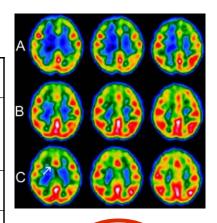
Nuklearmedizin PET

Verwendete Strahlung	$\beta^+ \rightarrow 2\gamma$
Prinzip	Radioaktive Stoffe chemisch-biologisch ununterscheidbar, physikalisch lokalisierbar
Dargestellte phys. Größe	Isotopenkonzentration
Bildtyp	berechnetes Tomogramm
Information	funktionell
Vorteile	hohe Empfindlichkeit 3D, Molekulare Bildgebung
Nachteile	Strahlenbelastung, begrenzte Auflösung: (einige mm), sehr teuer



Nebenwirkungen/ Risikos? Stochastische Schädigung möglich!

34


Nuklearmedizin Gammakamera

Verwendete Strahlung	e.m. Strahlung: γ
Prinzip	Radioaktive Stoffe chemisch-biologisch ununterscheidbar, physikalisch lokalisierbar
Dargestellte phys. Größe	Isotopenkonzentration
Bildtyp	Summationsbild
Information	funktionell
Vorteile	hohe Empfindlichkeit billig, Molekulare Bildgeb.
Nachteile	Strahlenbelastung, schwache Auflösung: (~ cm), Summationsbild

Nuklearmedizin SPECT

Verwendete Strahlung	e.m. Strahlung: γ
Prinzip	Radioaktive Stoffe chemisch-biologisch ununterscheidbar, physikalisch lokalisierbar
Dargestellte phys. Größe	Isotopenkonzentration
Bildtyp	berechnetes Tomogramm
Information	funktionell
Vorteile	hohe Empfindlichkeit billig, Molekulare Bildgeb.
Nachteile	Strahlenbelastung, schwache Auflösung: (~ cm)

Nebenwirkungen/ Risikos?

Stochastische
Schädigung
möglich!

36

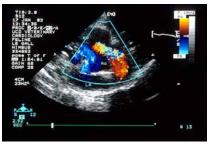
MRT

Verwendete Strahlung	e.m. Strahlung: Radiowellen
Prinzip	Magnetfeld (B), Anregung, anschließend darauf RW- Emission
Dargestellte phys. Größe	Wasserstoffkonzentration, Relaxationszeiten: T ₁ , T ₂
Bildtyp	direktes Tomogramm
Information	morphologisch / funktionell
Vorteile	keine Strahlenbelastung gute Auflösung (mm), guter Weichteilkontrast.
Nachteile	teuer, unempfindlich, lange Aufnahmezeiten

Nebenwirkungen/ Risikos? Herzschrittmacher, Metallprothesen

Sonographie Echoimpulsverfahren

Verwendete Strahlung	mechanische Strahlung: US
Prinzip	US-Impuls wird bei Grenzflächen reflektiert
Dargestellte phys. Größe	Intensität des reflektierten Ultraschalles
Bildtyp	direktes Tomogramm
Information	morphologisch
Vorteile	keine Strahlenbelastung gleichzeitiges Bild, billig hohe Auflösung (mm)
Nachteile	Operatorabhängig
	Begrenzte eindringtiefe


Nebenwirkungen/
Risikos?

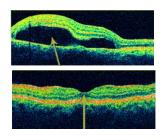
Keine, wenn:
J < 0,1 W/cm²
J·t < 50 /cm²

38

Sonographie Farb-Doppler Verfahren

Verwendete Strahlung	mechanische Strahlung: US
Prinzip	US Reflexion und Doppler Eff.: Frequenzverschiebung bei bewegten refl. Objekt
Dargestellte phys. Größe	Intensität des reflektierten Ultraschalls + Geschwin- digkeit des refl. Objektes
Bildtyp	direktes Tomogramm
Information	morphologisch / funktionell
Vorteile	keine Strahlenbelastung gleichzeitiges Bild, billig hohe Auflösung (mm)
Nachteile	Operatorabhängig Eindringtiefe (dm), kein 3D

Nebenwirkungen/
Risikos?


Keine, wenn:

J < 0,1 W/cm²

J·t < 50 /cm²

Optische Methode OCT

Verwendete Strahlung	elektromagnetische Str.: infrarotes Licht
Prinzip	Reflexion des Lichtes, und Interfeormetrie
Dargestellte phys. Größe	Intensität des reflektierten Lichtes
Bildtyp	direktes Tomogramm
Information	morphologisch
Vorteile	keine Strahlenbelastung
	hohe Auflösung (μm)
Nachteile	sehr begrenzte eindringtiefe (mm)

4