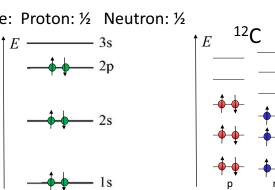
NMR und MRI

László Smeller


Spin

Spin (Spinguantenzahl)

Bei Elektronen: ½

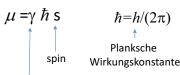
Bei Atomkerne: Proton: ½ Neutron: ½

Schalen:

Benennungen

- NMR = Nuclear Magnetic Resonance Kernmagnetische Resonanz
- NMR Spektroskopie **NMR** Tomographie
- MRI=Magnetic Resonance Imaging Magnetische Resonanzbildgebung
- MRT=Magnetische Resonanztomographie

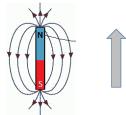
Für Kernspinresonanzverfahren geeignete Kerne


Die mit ungepaarter Protonen oder Neutronenzahl

Meistens verwendete Kerne (s = 1/2)

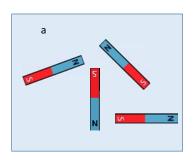
Spin, magnetisches Moment

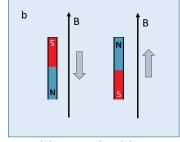
Spin \implies magnetisches Moment (μ) [J/T]


Elementarteilchen mit von null unterschiedlichem Spin weisen eigenes magnetisches Moment auf.

Elementarteilchen und Kerne

zB: γ_{Proton} =2,67·10⁸ T⁻¹s⁻¹

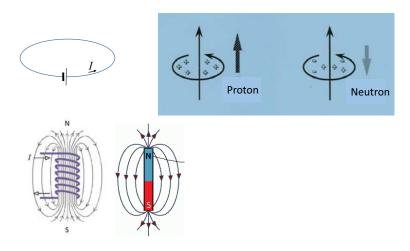



Joule = SI Einheit der Energie Tesla = SI Einheit des Magnetfeldes

Zeemansche Aufspaltung

Teilchen mit einem Spin von ± ½

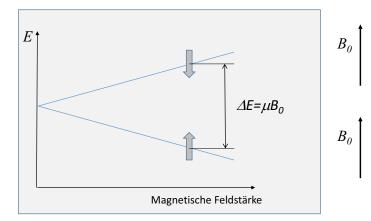
- Energiezustand:
- a.) ohne Magnetfeld unabhängig vom Spinzustand
- b.) mit Magnetfeld: Aufspaltung des Energieniveaus Zeemansche-Aufspaltung



instabiler Zustand stabiler Zustand

Spin, magnetisches Moment

Naive Erklärung aus klassischen Physik:

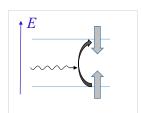

Zeemansche Aufspaltung

Teilchen mit einem Spin von $\pm \frac{1}{2}$ (zB: Proton = H Atomkern ...)

antiparallel

parallel

• Energiezustande in Magnetfeld

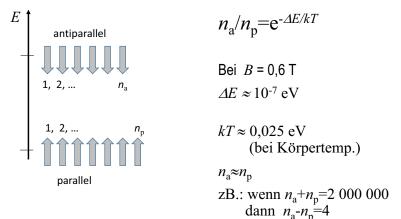

Zeemansche Aufspaltung

Teilchen mit einem Spin von $\pm \frac{1}{2} \Rightarrow \Delta s = 1$

$$\Delta E = \Delta \mu B_0 = \gamma \hbar B_0$$

Photonen mit $E_{\text{photon}} = hf = \Delta E$ können Spinübergänge verursachen.

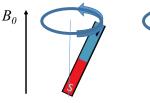
$$f = \frac{\gamma B_0}{2\pi}$$


Bei B_0 =1T für ein Proton:

$$\Delta E = 2.8 \cdot 10^{-26} \text{ J } (=1.75 \cdot 10^{-7} \text{eV})$$

$$f = \Delta E/h = 2.8 \cdot 10^{-26} \text{ J} / 6.63 \cdot 10^{-34} \text{ Js} = 4.26 \cdot 10^7 \text{ Hz} = 42.6 \text{ MHz}$$

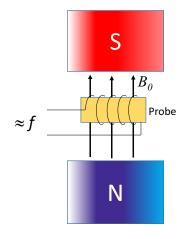
Radiowelle!


Boltzmannsche Verteilung

d.h.: 4 aus 2 000 000 Kerne sind nicht ausgeglichen

Klassische Beschreibung: Präzession

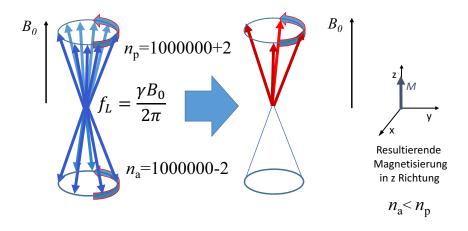
Prezässion wegen des Drehmomentes

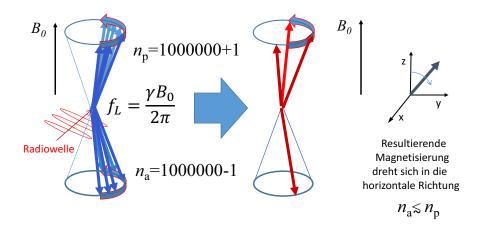

Frequenz der Präzession:


Larmor Frequenz

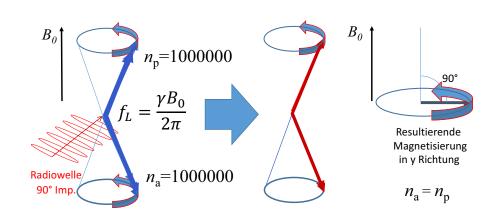
$$f_L = \frac{\gamma B_0}{2\pi}$$

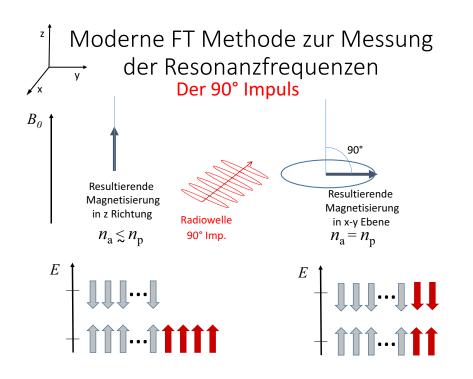
Resonanz mit dem äußeren Wechselmagnetfeld


Konventionelle Messung der Kernresonanz


Moderne FT Methode zur Messung der Resonanzfrequenzen

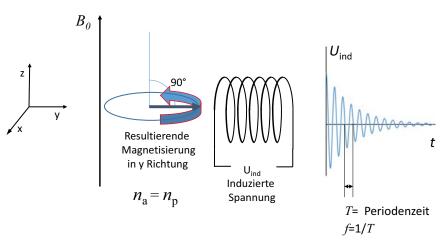
Eine Probe hat viele ($\approx 10^{23}$) Kerne die alle mit einer Larmor –Frequenz prezedieren. Betrachten wir 2 000 000 Kerne:

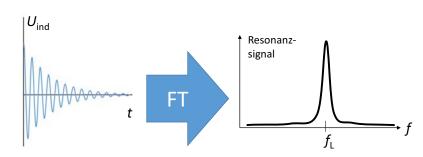

Moderne FT Methode zur Messung der Resonanzfrequenzen


Nach einer Bestrahlung aus Richtung x mit Radiowellen, deren Frequenz gleich mit f_L ist

Moderne FT Methode zur Messung der Resonanzfrequenzen

Nach einer Bestrahlung aus Richtung x mit einem 90° Impuls:

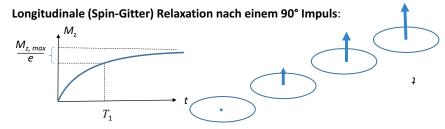



Moderne FT Methode zur Messung der Resonanzfrequenzen Der 180° Impuls Resultierende Magnetisierung in z Richtung $n_a < n_p$ Resultierende Magnetisierung in z Richtung $n_a > n_p$ $n_a > n_p$ $n_a > n_p$

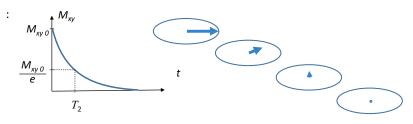
Moderne FT Methode zur Messung der Resonanzfrequenzen

Freie Induktionsabfall (Free Induction Decay: FID) nach einem 90° Impuls

Spektrum aus FID Signal

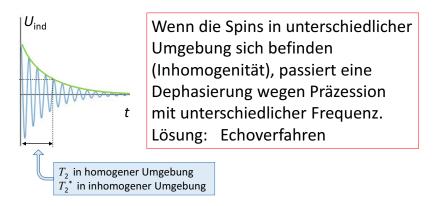


Fourier Transformation

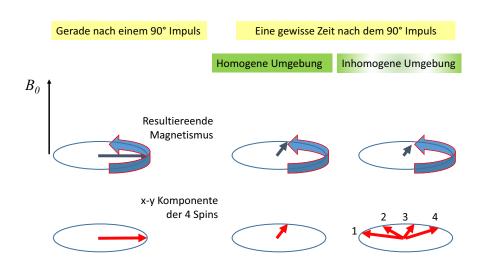

Zwei unabhängige Relaxationen

Longitudinale Relaxation: Relaxation der z-Komponente der Magnetisierung (von Null zu ihrer Gleichgewichtswert nach einem 90° Impuls) Energieabgabe (in Form von Wärme) Spin-Gitter Relaxation. Relaxationszeit: T_1 Transversale Relaxation: Relax. der x und y Komponenten der Magnetisierung (von ihrer maximalen Wert zu Null nach einem 90° Impuls) Keine Energieabgabe (Energieaustausch zw. Spins) Spin-Spin Relaxation. Relaxationszeit: T_2 M_{xy}

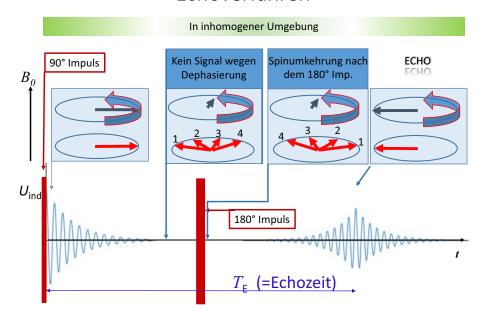
Zwei unabhängige Relaxationen

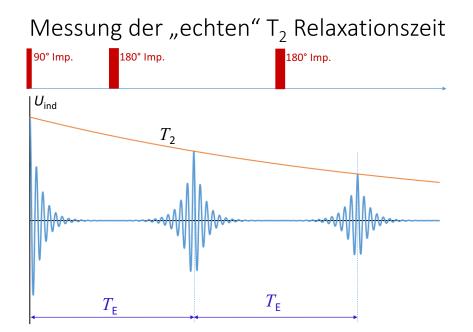


Transversale (Spin-Spin) Relaxation nach einem 90° Impuls:

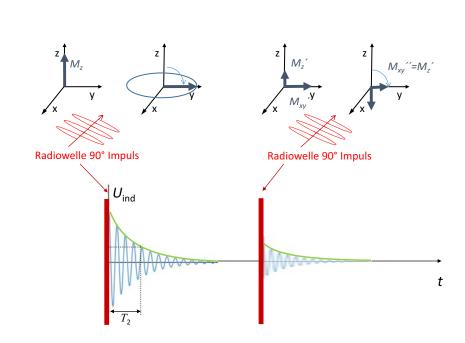


Messung der Relaxationszeiten

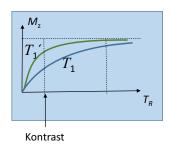

 T_2 : Abklingen des FID Signals (nur wenn die Spins in identischer Umgebung sind).

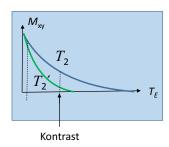


Dephasierung wegen Inhomogenität



Echoverfahren




Messbare Parametern:

Spindichte (Dichte von H Atome)

Signalstärke ist mit Spindichte Proportional)

 T_1 und T_2 Relaxationszeiten

 $\mathsf{Kurze}\ T_1 \mathop{\Rightarrow} \mathsf{starkes}\ \mathsf{Signal}$

Lange $T_2 \Rightarrow$ starkes Signal

Information

Spindichte (Dichte von H Atome)
Signalstärke ist mit Spindichte Proportional
Nur schwacher Kontrast

 T_1 Relaxationszeit:

Für (flüssiges) Wasser: einige Sekunden T_1 sinkt mit Erhöhung der Viskosität

Körperflüssigkeiten (Blut, Liquor): einige Sekunden Proteinhaltige Lösungen (zB: Tumorzyste) kürzere T_1 Körperfett 100 ms "anatomischers Bild"

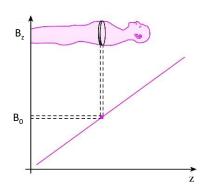
Information

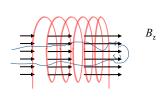
Tissue	T1 (msec)	T2 (msec)
Water/CSF	4000	2000
Gray matter	900	90
Muscle	900	50
Liver	500	40
Fat	250	70
Tendon	400	5
Proteins	250	0.1- 1.0
Ice	5000	0.001

T_2 Relaxationszeit:

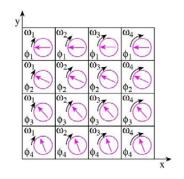
Flüssigkeiten:

schnelle Molekülbewegungen: lange T_2


Wasserhaltige Geweben (z.B.: Ödem) erhöhte T_2

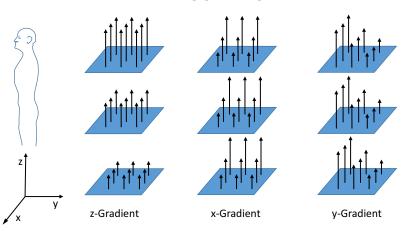

Wie Bekommt man ein Bild?

Auswahl einer Schicht

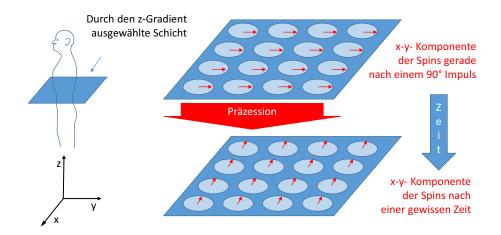

Der Patient befindet sich in einem inhomogenen Magnetfeld Die Feldstärke und die Frequenz der Radiowellen stimmen nur in einem Schicht überein. Ein Schicht wird ausgewählt

$$f = \frac{\gamma B_0}{2\pi}$$

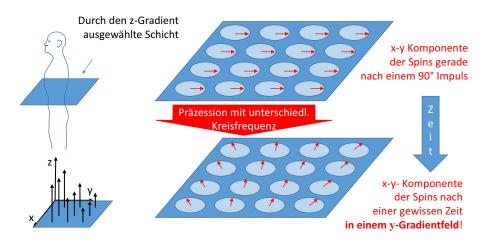
Kodierung in einer Schicht

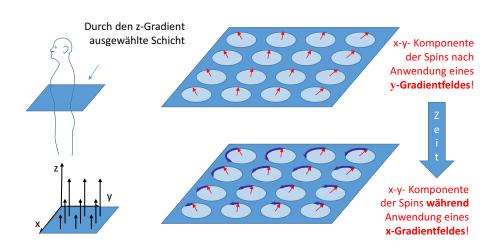


Y- Kodierung: Phase

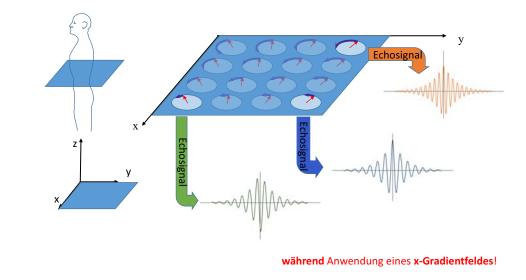

X-Kodierung: Frequenz

Gradientfelder


Gradientfeld = Orabhängiges Magnetfeld


Freie Präzession der Spins

Phasenkodierung mit einem y-Gradientfeld



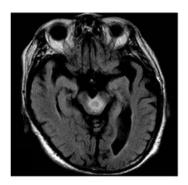
Frequenzkodierung mit x-Gradientfeld

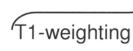
Gleiche Frequenz (Gleiche Umdrehungsgeschwindigkeit) x-y- Komponente der Spins während Anwendung eines x-Gradientfeldes!

Detektierung

Dekodierung der Phasen und Frequenzinformationen

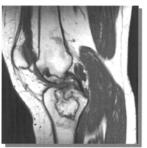
Zweidimensionale Fourier Transformation



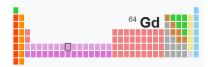

Abbildung aus: Song TJ, Suh SH, Cho H, Lee KY - Yonsei Med. J. (2010)

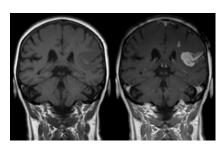
Bilder

Protonendichte T_1 gewichtetes B. T_2 gewichtetes B.


Relaxation weighting

Proton density weighting

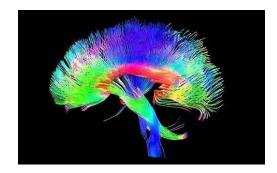


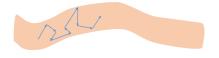

Kontrastmittel

Gadoliniumhaltige Lösung Gd ist paramagnetisch ⇒

reduziert die Relaxationszeiten

ist giftig, → nur im form von Chelatkomplex anwendbar.


Blut-Gehirn-Schranke nach Infarkt durchlässig für Ga-Kontrastmittel

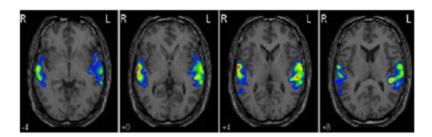

Diffusionsgewichtete MRT Diffusions-Tensor-Bildgebung

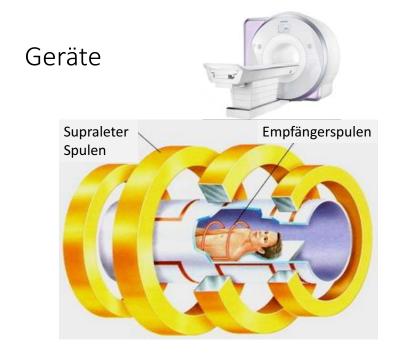
• Diffusion in freien Raum:

• Diffusion in Fasern:

BOLD Technique Blood oxigenation level dependent

Oxygeniertes Hämoglobin ist diamagnetisch Desoxygeniertes Hämoglobin ist paramagnetisch




Verkürzt die T_2 Relaxationszeit

Sichtbare Unterschiede in T_2 gewichtetem Bild Meistens in fMRI verwendee

fMRI funktionelle Magnetresonanztomographie

Gehirntätigkeit
Erhöhte Durchblutung
Durchblutung erhöht besser als Oxygenverbrauch
Oxygengehalt des aktivierten Gehirnteiles ist erhöht.

Vorteile-Nachteile

Vorteile:

Keine ionisierende Strahlung Besseres Weichteilkontrast

Nachteile:

Lange Aufnahmezeit Klaustrophobie Keine Metallimplantate Kein Herzschrittmacher

Groß, Teuer, Verbraucht viel Energie

