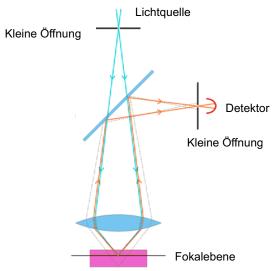

Methoden der Strukturenuntersuchung

Lichtmikroskopische Techniken
Rastermikroskope
Elektronmikroskope
Diffraktionsmethode

Typische Grössen

Auflösungsgrenze des Lichtmikroskops

Auflösungsgrenze: $\delta = 0.61 \cdot \lambda / (n \cdot \sin \omega)$

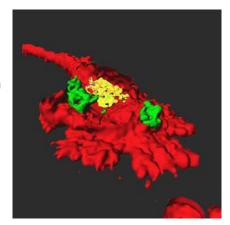

Mit λ =400 nm, n=1,6 und ω ≈90° ist d≈150 nm

Spezielle Lichtmikroskopische Techniquen

- Siehe Praktikum
- Konfokale Mikroskopie
- Zweiphotonenmikroskop
- Fluoreszenzkorrelationsmethode

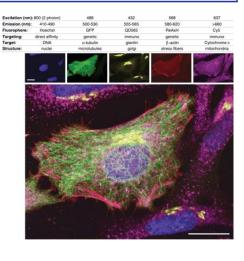

Das Prinzip Okularlinse Emissionsfilter Objektivlinse Fluoreszierendes Objekt Konventionelle mikroskopische Aufnahme

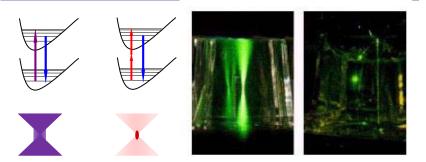
Konfokales Mikroskop


Konfokales Mikroskop

Aus Tubulin bestehende Mikrotubli in Zellen

Konfokales Mikroskop

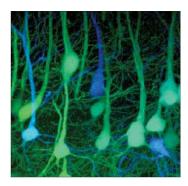

Dendritische Zelle mit Pollenteilchen. 3D Aufnahme mit konfokalem Mikroskop.


Gleichzeitige Anwendung von mehreren fluoreszierenden Markierungen

He-La Zellen markiert mit fünf unterschiedlichen Fluoreszenzmethoden.

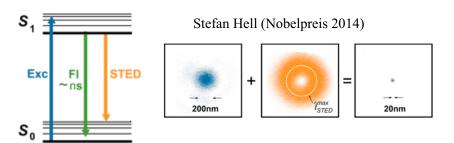
Der Masstab ist 20 µm.

Fluoreszenzanregung mit zwei Photonen Zweiphotonenmikroskop

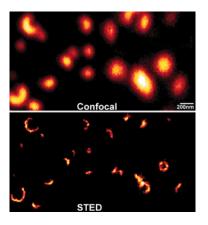


IR Laser

Fluoreszenzemission bei Einphoton- und Zweiphotonenanregung.

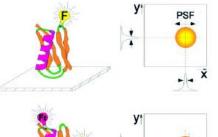

Auflösung!

Zweiphotonen mikroskopie



Visual Cortex von genetisch manipulierten Mause die GFP produzieren.

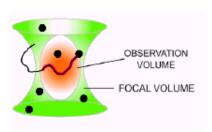
STimulated Emission Depletion (STED) Mikroskop

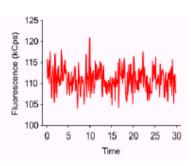


STimulated Emission Depletion (STED) Mikroskop

Reorganization des Synaptolysins in synaptischen Vesikeln

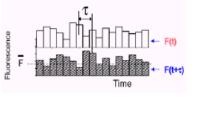
STED: Lokalization und Kolokalization

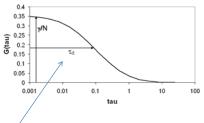

Die Position des Eiweisses kann mit nm genauigkeit angenommen werden.


Kolokalization bedeutet nicht unbedingt eine Wechselwirkung!

Fluoreszenzkorrelationsspektroskopie (FCS)

Fluktuation der Molekülen in einem sehr kleinen Volumen: fl Konzentration: 10 nM Anzahl der Moleküle in Beobachtungsvolumen beträgt durchschnittlich: 6


Fluktuationen des Fluoreszenzlichtes:



Ähnlich zur dynamischen Lischtstreuung, aber mit Fluoreszenz

FCS: Autokorrelationsfunktion

$$G(\tau) = \frac{\langle \delta I(t)\delta I(t+\tau)\rangle}{\langle I(t)\rangle^2} = \frac{\langle I(t)I(t+\tau)\rangle}{\langle I(t)\rangle^2} - 1$$

 $\tau_{\rm d}$ – charakteristische Zeit der Diffusion eines Moleküls

Diffusionskonstante ist abhängig von der Molekülengröße!

FCS: Welche Information kann man erhalten?

Ligandenbindung

Kleines Ligandmolekül mit Fluoreszenzmarkierung + großes

Eiweißmolekül: Diffusionskonstante ändert sich


Aggregation

Markierte Proteine: Lichtintensität von Dimere, Tetramere... ist höher

Konzentration Reaktionsgeschwindigkeit Diffusion in der Inneren der Zellen

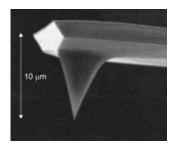
Die Autokorrelationsfunktion muss zu einer Modellfunktion angepasst werden um diese Informationen aus der Parametern der angepasste Funktion zu erhalten.

Rastermikroskope (Scanning Probe Microscopes)

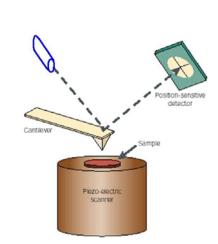
STM:

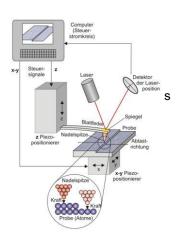
Scanning Tunneling Microscope Rastertunnelmikroskop

SNOM:

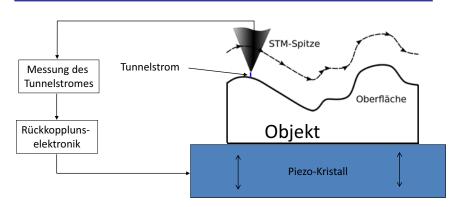

Scanning Nearfield Optical Microscope

AFM:

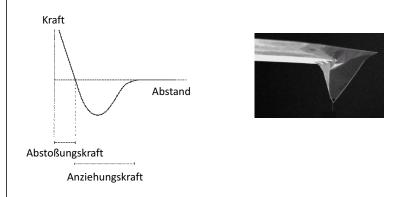

Atomic Force Microscope Rasterkraftmikroskop (Atomkraftmikroskop)


Das Rastertunnelmikroskop wurde in 1981 von Heinrich Rohrer und Gerd K. Binnig entwickelt. Fünf Jahre später erhielten sie den Nobel-Preis.

RASTERSONDENMIKROSKOPE



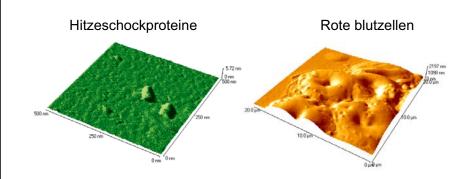
Rasterkraftmikroskop (Atomkraftmikroskop) (Atomic Force Microscope-AFM)


Rastertunnelmikroskop

Der Tunnelstrom ist konstant gehalten mit der vertikalen Bewegung des Objektes.

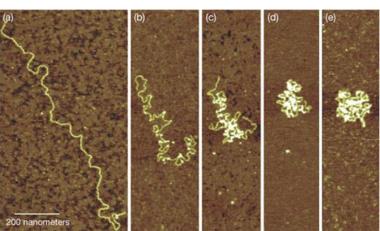
Die Kraft zwischen der Nadel und dem Objekt

- •eine sehr spitze, nadelartige Sonde
- •Krümmungsradius bei der Spitze ≈ 10-20 nm => x-y Auflösung!



AFM Messmethoden

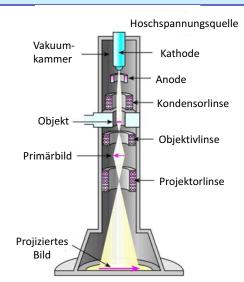
- Kontakt-Modus
- Der intermittierende Modus (engl.: intermittent contact mode, oder tapping mode genannt)


AFM Aufnahmen

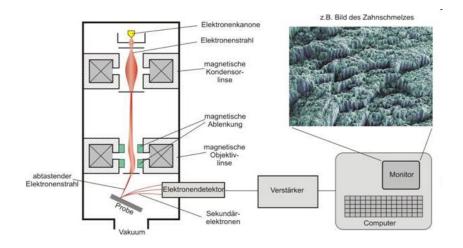
AFM Aufnahmen 000 0.25 0.50 0.75 pm Spectrum acryins1.004

Alpha-Crystallin Aggregate

DNS



Progressive images from atomic force microscopy show the compaction of DNA caused by a protein called AbF2. (https://www.llnl.gov/str/May04/DeYoreo.html)


ELEKTRONENMIKROSKOPE

Transmissionselektronenmikroskop Rasterelektronenmikroskop

Transmission selektronen mikroskop

Rasterelektronenmikroskop

DIFFRAKTIONSMETHODE

Auflösungsvermögen des Elektronenmikroskops Abbe'sches Prinzip und Materialwellen

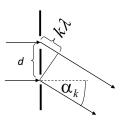
Materialwelle: Zu einem Teilchen mit m Masse und v Geschwindigkeit, kann man eine Welle (Materienwelle)

zuordnen, die eine Wellenlänge von $\lambda = \frac{h}{mv}$ hat.

Die Geschwindigkeit des Elektrons nach einer Beschleunigung mit U Spannung beträgt:

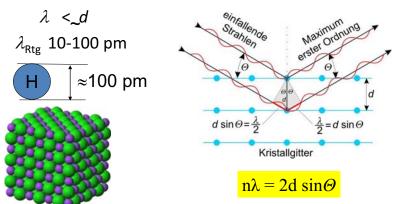
$$v = \sqrt{\frac{2eU}{m}}$$
 womit: $\lambda = \frac{h}{\sqrt{2emU}}$

Typisch kann λ 5 pm sein. Aber ω ist sehr klein! NA≈0,002

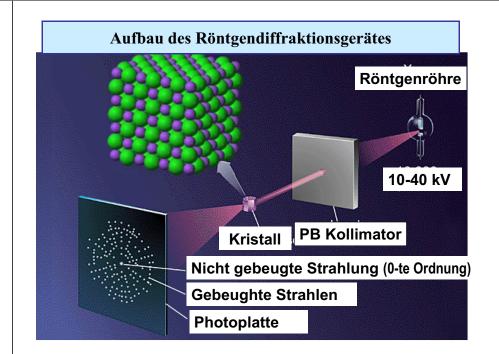

$$\delta = 0.61 \cdot \lambda / (n \cdot \sin \omega) \approx nm$$

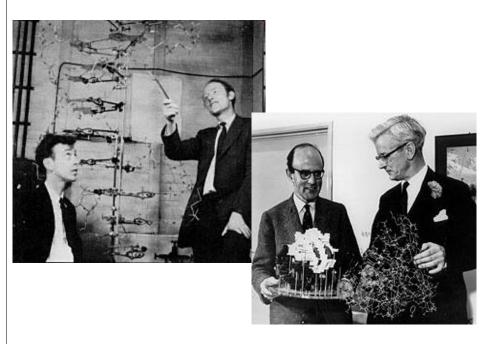
Röntgendiffraktion

Anwendung der Röntgenstrahlung in Strukturanalyse der Materie.

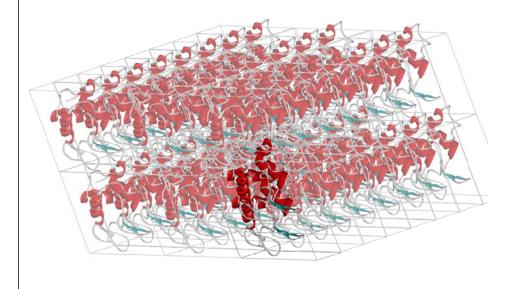

Zur Erinnerung:
Diffraktion des Lichtes

$$\sin \alpha_k = \frac{k\lambda}{d}$$

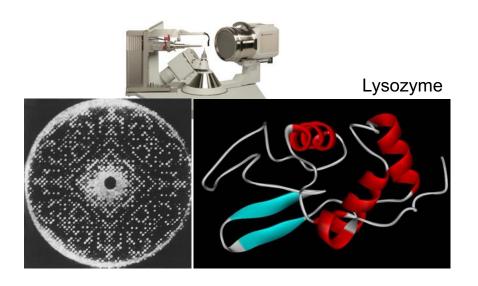



Röntgendiffraktion

Was für ein Gitter passt zur Röntgenstrahlung?



Atomgitter \rightarrow Kristall \rightarrow auch DNS o. Proteinkristall!



Bestimmung der Raumstruktur der Eiweiße

Elektronen und Neutronendiffraktion

λ: Materialwellen

Elektronen: Kleine Eindringstiefe: Oberflächen


Elektronen und Neutronen werden an den Atomkernen gestreut.

(Rtg wird durch Elektronenwolken gestreut.)

Elektronen werden an den schwereren Kernen gestreut

Neutronen auch an den Protonen, =>

Neutronendiffraktion gut zur Strukturuntersuchung von wasserstoffhaltigem Material.

