Kontingenztabellen. Chi-Quadrat-Test

Beispiel 1

	mit Brille	ohne Brille	Total
Frau	28	75	103
Mann	48	49	97
	76	124	200

Korrelationsanalyse zwischen kategorischen Merkmalen

Häufigkeitstabelle (Kontingenztabelle): eine tabellarische Darstellung der gemeinsamen Häufigkeitsverteilung zweier Variablen X (z.B. Geschlecht) und Y (Brillenträgerschaft)

	mit Brille	ohne Brille	Total
Frau	a=28	b=75	103
Mann	c=48	d=49	97
	76	124	200

Frage: unterscheidet sich die Häufigkeit eines feststellbaren Merkmals (Symptoms) in zwei Populationen?

Aufstellung der Nullhypothese

H₀: Geschlecht und Brillenträgerschaft sind voneinander unabhängig (es gibt keinen Unterschied)

$$\frac{a'}{b'} = \frac{c'}{d'}$$
 oder $\frac{a'}{c'} = \frac{b'}{d'}$

Wie gross wäre die **erwartete Häufigkeit** (expected frequency) in der Zelle *a'*, wenn die Nullhypothese gültig ist?

Anzahl der Frauen:

$$a + b = 103$$

Anzahl der Personen mit Brille:

$$a + c = 76$$

Proportion der Frauen in der Stichprobe:

$$P(Frau) = (a + b)/n = 103/200$$

Proportion der Personen mit Brille:

P(mit Brille) =
$$(a + c)/n = 76/200$$

	mit Brille	ohne Brille	Total
Frau	a'=?	b'=?	103
Mann	c'=?	d'=?	97
	76	124	200

erwartete (expected) Kreuztabelle

Erwartete Häufigkeiten. Annahme: *H*₀ ist gültig ⇒ Geschlecht und Brillenträgerschaft sind unabhängige Ereignisse

erwartete Häufigkeit in der Zelle links oben: a'=
$$\frac{a+b}{n} \cdot \frac{a+c}{n} \cdot n = \frac{(a+b) \cdot (a+c)}{n}$$
 erwartete Häufigkeit in der Zelle rechts oben: b'= $\frac{a+b}{n} \cdot \frac{b+d}{n} \cdot n = \frac{(a+b) \cdot (b+d)}{n}$ erwartete Häufigkeit in der Zelle links unten: c'= $\frac{c+d}{n} \cdot \frac{a+c}{n} \cdot n = \frac{(c+d) \cdot (a+c)}{n}$ erwartete Häufigkeit in der Zelle rechts unten: d'= $\frac{c+d}{n} \cdot \frac{b+d}{n} \cdot n = \frac{(c+d) \cdot (b+d)}{n}$

	mit	ohne	Total
F	a=28	b=75	103
М	c=48	d=49	97
	76	124	200

	mit	ohne	Total
F	103*76/200	103*124/200	103
М	97*76/200	97*124/200	97
	76	124	200

empirische (observierte, observed) Kreuztabelle

erwartete (expected) Kreuztabelle

Die erwartete Häufigkeiten aus der empirischen Häufigkeiten

	mit	ohne	Total
F	a=28	b=75	103
М	c=48	d=49	97
	76	124	200

	mit	ohne	Total
F	a'=39.14	b'=63.86	103
М	c'=36.86	d'=60.14	97
	76	124	200

empirische (observed) Kreuztabelle erwartete (expected) Kreuztabelle

 $(erwartete H \ddot{a}ufigkeit) = \frac{(Spaltensumme) \cdot (Zeilensumme)}{(Anzahl der Daten in der Stichprobe)}$

Wenn die Nullhypothese ist gültig:

Die Werte in der entsprechenden Zellen der Kontingenztabellen mit empirischen und erwarteten Häufigkeiten sind ungefähr gleich.

Die folgende Prüfgrösse (gewichtete quadratische Summe) zeigt Chi-quadrat Verteilung:

Prüfgrösse
$$\chi^2 = \sum_{i} \frac{(O_i - E_i)^2}{E_i},$$

wobei

O_i die empirische (observed)

E_i die erwartete (expected) Häufigkeit

in der i-ten Zelle sind.

Freiheitsgrad: (Anzahl der Zeilen –1)*(Anzahl der Spalten –1) für eindimensionalen Tabellen: n-1

z.B. 2*2 (vierfelder-) Tabelle: 1

Bedingungen der Durchführung

n (Stichprobenumfang) soll genügend gross sein

In der Kontingenztabelle der *erwarteten* Häufigkeiten sollen alle Zellenwerte grösser als 1 sein.

In der Kontingenztabelle der erwarteten Häufigkeiten soll die Anzahl der Zellen, in den der Wert zwischen 1 und 5 ist, weniger als 20 % der Stichprobenumpfang sein.

(z.B. Vierfeldertabelle: alle Elemente sollen grösser als 5 sein)

Spezielfall für Vierfeldertabelle (Praktikumsbuch 2.b.30) Vierveldertest

	das untersuchte		
	ist vorhanden	insgesamt	
Kollektiv A	а	Ь	a+b
Kollektiv B	С	d	c+d
insgesamt	a+c	b+d	п

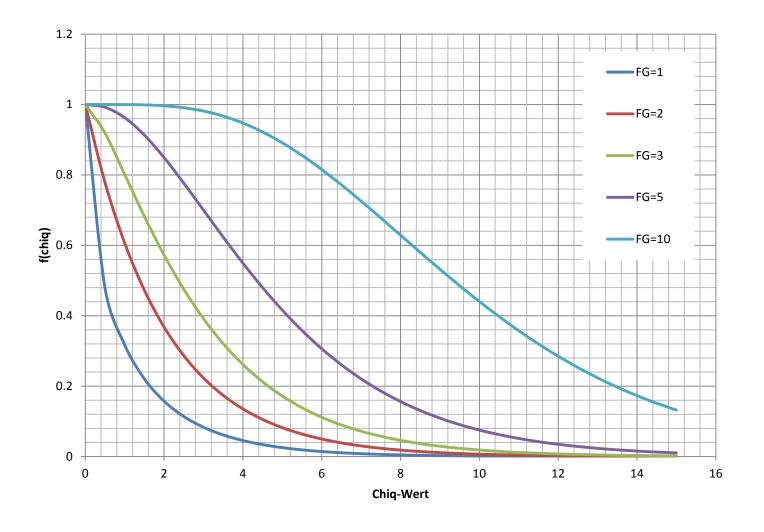
$$\chi_{\mathsf{M}}^2 = \frac{n \cdot (ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

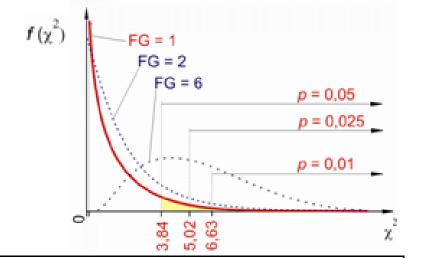
Die Bedingung der Durchführung:

das Produkt der zwei kleinsten Teilsummen soll grösser sein als 5*n*

$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$$

Die Chiq. Verteilung ist auch eine Familie...





χ^2 (CHI-QUADRAT)-VERTEILUNG

p (Irrtumswahrscheinlichkeit)

Freiheits- grad (FG)	0,99	0,975	0,95	0,05	0,025	0,01	0,001
1	0,0000157	0,0000982	0,000393	3,84	5,02	6,63	10,83
2	0,0201	0,0506	0,103	5,99	7,88	9,21	13,82
3	0,115	0,216	0,352	7,81	9,35	11,34	16,27
4	0,297	0,484	0,711	9,49	11,14	13,28	18,47
5	0,554	0,831	1,15	11,07	12,83	15,09	20,51
6	0,872	1,24	1,64	12,59	14,45	16,81	22,46
7	1,24	1,69	2,17	14,07	16,01	18,47	24,32
8	1,65	2,18	2,73	15,51	17,53	20,09	26,13
	0.00		0.00	4 0 00	45.00	04.00	

Beispiel 1 Die Bedingung des Tests: das Produkt der zwei kleinsten Teilsummen soll grösser sein als 5*n*

	mit Brille	ohne Brille	Total
Frau	a=28	b=75	103
Mann	c=48	d=49	97
	76	124	200

$$76*97 = 7372 > 5*200 = 1000$$

Man darf den Chi-Quadrat-Test anwenden

$$\chi_{\rm M}^2 = \frac{200 \cdot (28 \cdot 49 - 48 \cdot 75)^2}{76 \cdot 124 \cdot 103 \cdot 97} = 10.54$$

 $10.54 > \chi^2_{krit} = 3,84$ H_0 ist falsch

Es gibt einen
Zusammenhang zw.
dem Geschlecht
und der
Brillenträgerschaft
(Männer tragen
Brille öfter)

	p (Irrtumswahrscheinlichkeit)						
Freiheits- grad (FG)	0,99	0,975	0,95	0,05	0,025	0,01	0,001
1	0,0000157	0,0000982	0,000393	3,84	5,02	6,63	10,83

$$\chi_{\rm M}^2 = \frac{200 \cdot (28 \cdot 49 - 48 \cdot 75)^2}{76 \cdot 124 \cdot 103 \cdot 97} = 10.54$$

$$10.54 > \chi^2_{krit} = 3.84$$
 H_0 ist falsch

$$10.54 > \chi^2_{krit} = 6.63$$
 H_0 ist falsch

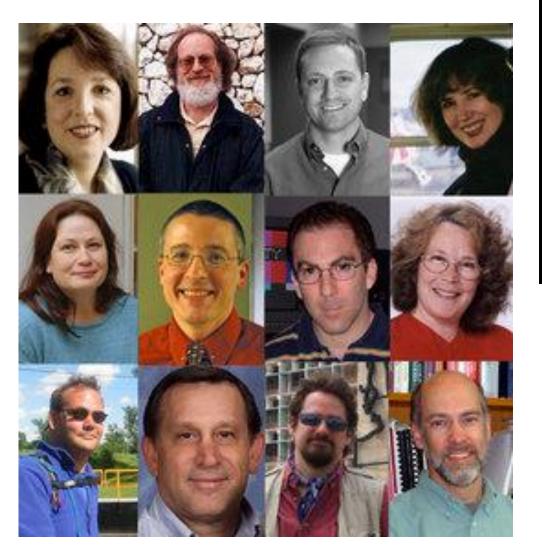
mit einem Signifikanzniveu: <0.01

	А	В	С	D
1	Empirische Werte			
2		mit Brille	ohne Brille	
3	Frau	28	75	=SUMME(B3:C3)
4	Mann	48	49	=SUMME(B4:C4)
5		=SUMME(B3:B4)	=SUMME(C3:C4)	=SUMME(B5:C5)
6				
7	Ewartete Werte			
8		mit Brille	ohne Brille	
9	Frau	=\$D3*B\$5/\$D\$5	=\$D3*C\$5/\$D\$5	=SUMME(B9:C9)
10	Mann	=\$D4*B\$5/\$D\$5	=\$D4*C\$5/\$D\$5	=SUMME(B10:C10)
11		=SUMME(B9:B10)	=SUMME(C9:C10)	=SUMME(B11:C11)
12				
13			Signifikanzniveau:	=CHITEST(B3:C4,B9:C10)
14			Chi ² -Wert:	=CHIINV(D13,1)

	А	В	С	D
1	Empirische Werte			
2		mit Brille	ohne Brille	
3	Frau	28	75	103
4	Mann	48	49	97
5		76	124	200
6				
7	Ewartete Werte			
8		mit Brille	ohne Brille	
9	Frau	39.140	63.860	103
10	Mann	36.860	60.140	97
11		76	124	200
12				
13			Signifikanzniveau:	0.0012
14			Chi ² -Wert:	10.5442606

Kalkulation mit Excel

Beispiel 2



	mit Brille	ohne Brille	Total
Frau	1	3	4
Mann	5	3	8
	6	6	12

$$4*6 = 24 < 5*12 = 60$$

Dürfen wir in diesem Fall den Chi-Quadrat-Test nicht anwenden.

Erhöhung des Umfanges der Stichprobe

	mit	ohne	Total
F	1	3	4
М	5	3	8
	6	6	12

	mit	ohne	Total
F	28	75	103
M	48	49	97
	76	124	200

$$\frac{n_{\text{mit}}}{n_{\text{ohne}}} = \frac{1}{3} = 0.33$$

$$\frac{n_{\text{mit}}}{n_{\text{ohne}}} = \frac{28}{75} = 0.37$$

$$\frac{n_{\text{mit}}}{n_{\text{obno}}} = \frac{5}{3} = 1.67$$

$$\frac{n_{\text{mit}}}{n_{\text{obne}}} = \frac{48}{49} = 0.98$$

es gibt eine Vermutung, aber der Nachweis geht nicht

n vergrössert sich (12 → 200): der Nachweis geht

Beispiel 3 H_0 : die Häufigkeit von Lungenkrebs bei Rauchern und Nichtrauchern ist identisch, d.h. $\chi^2 = 0$.

 H_1 : die beiden Häufigkeiten unterscheiden sich, also ist $\chi^2 \neq 0$.

In der Tabelle sind die Häufigkeiten der zwei Kollektive aus der Stichprobe

einer Lungenfürsorge dargestellt.

Da 23.27 = 621 > 5.61 = 305, kann der Test durchgeführt werden.

$$\chi_{\rm M}^2 = \frac{61 \cdot (14 \cdot 25 - 9 \cdot 13)^2}{23 \cdot 38 \cdot 34 \cdot 27} = 4.13$$

Es ist zu sehen, dass $\chi_{\rm M}^2 \neq 0$ ist, aber ist der Unterschied auch signifikant (oder nur zufällig)?

	Lungen krebs	kein Lungen krebs	
Raucher	14	13	27
Nichtraucher	9	25	34
	23	38	61

Sei das Signifikanzniveau: 5%. Der Freiheitsgrad (2x2 Tabelle) ist: 1.

$$4.13 > \chi^2_{\text{krit}} = 3.84 \longrightarrow H_0 \text{ ist falsch}$$

Danach ist der Unterschied in der Häufigkeit von Lungenkrebs bei Rauchern und Nicht-rauchern signifikant (bei einem Signifikanzniveau von 5%).

Beispiel 4 (Pr. Buch, R.103.) Über eine erfolgreiche operative Korrektion einer bestimmten Augenkrankheit (ischaemische optische Neuropathie vom nicht-arterialen Typ) wurde im Jahre 1989 eine Veröffentlichung ausgegeben. Da in dieser Krankheit früher keinerlei wirksame Behandlungsmethode bekannt war, wurde dieser Eingriff verbreitet angewendet. Kürzlich erschienen jedoch Berichte auch von erfolglosen Eingriffen, daher hat man 244 solche Kranken in 25 klinischen Zentren statistisch erfasst, von denen bei 119 Personen die Operation durchgeführt wurde, bei 125 Kranken jedoch nicht. Die Beobachtungen in tabellarischer Form:

empirische Häufigkeiten

	operiert	nicht op.	insg.
verbessert	39	53	92
nicht verbessert	52	56	108
verschlechtert	28	16	44
insgesamt	119	125	244

erwartete Häufigkeiten

or warroto i ladiigitorion					
	operiert	nicht op.	insg.		
verbessert	45	47	92		
nicht verbessert	53	55	108		
verschlechtert	21	23	44		
insgesamt	119	125	244		

Es ist mit statistischen Methoden zu prüfen, ob die Anzahl der Besserungen ohne Operation tatsächlich höher war? H_0 : keine Differenz

$$khi^2 = (39-44.87)^2/44.87 + (53-47.13)^2/47.13 + (52-52.67)^2/52.67 + (56-55.33)^2/55.33 + (28-21.46)^2/21.46 + (16-22.54)^2/22.54 = 5.407$$

Weil 5.407 < 5.991= $\chi^2_{\text{krit. FG}=2}$, ablehnen wir die H_0 nicht.

Wieder ist alles im Excel einfacher:

empirische Häufigkeiten

empineerie i laangkekeri					
	operiert	nicht op.	insg.		
verbessert	39	53	92		
nicht verbessert	52	56	108		
verschlechtert	28	16	44		
insgesamt	119	125	244		

erwartete Häufigkeiten

	operiert	nicht op.	insg.
verbessert	45	47	92
nicht verbessert	53	55	108
verschlechtert	21	23	44
insgesamt	119	125	244

P=chiq.test(beobachtet;erwartet)

Arten von Abhängigkeitsbeziehungen

