Medizinische Biophysik 2018. 05. 02.

Transportprozesse

IV. Wärmeleitung (Energietransport)

- 0. Mechanismus
- 1. Grundbegriffe Energiestromstärke, -dichte
- 2. Transportgesetz = Fourier-Gesetz
- 3. Anwendungen

V. Verallgemeinerung der Transportgesetze

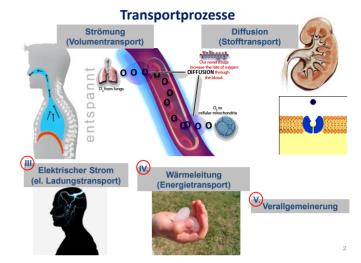
Extensive und intensive Größen, 0. Hauptsatz der Thermodynamik, onsagersche Beziehung, 2. Hauptsatz der Thermodynamik

VI. Energetische Beziehungen (Thermodynamik)

- 1. Nomenklatu
- 2. Energietausch (Arbeit) in den einzelnen Wechselwirkungen
- 3. Innere Energie (E)
- 4. Erster (1.) Hauptsatz der Thermodynamik
- 5. Entropie (S) phenomenologische Definition
- 6. Zweiter (2.) Hauptsatz der Thermodynamik

7. Entropie (S) - statistische Definition

Wärmebildung und -abgabe Wärme-Aktivität bildung (W) 115 In Ruhe Langsames 260 Spazieren Radfahren 420 (15 km/h) Treppen-700 steigen (2/s) Laufen 1150 (15 km/h) Strahlung Leitung Verdunstuna



IV. Wärmeleitung (Energietransport)

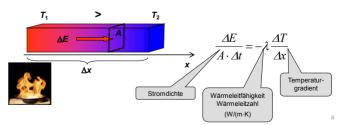
0. Mechanismus: Stöße zw. Atomen und Molekülen + freie Elektronen = Konduktion

1. Grundbegriffe

- Energiestromstärke (I): $I = \frac{\Delta E}{\Delta t}$ $\left(\frac{J}{s} = W\right)$

J. B. J. Fourier 1768-1830 Mathematiker und Physiker

2. Transportgesetz = Fourier-Gesetz



■ Wärmeleitfähigkeit: ➤ stoffspezifisch

Stoff	λ (W/(m-K)
Silber	420
Glas	1
Wasser	0,6
Muskel	0,4
Fett	0,2
Luft	0,025

3. Anwendungen (Zusammenfassung der Wärmeabgabemechanismen)

$$\Delta P = \sigma \cdot (T_{\text{Korner}}^4 - T_{\text{Limgebung}}^4) \cdot \Delta P$$

$$T_{\text{K\"{o}rper}}$$
= 28°C T_{Umgebung} = 20°C $\triangle P$ = 83 W

$$T_{\text{Umgebung}} = 0^{\circ}\text{C}$$
 $\triangle P = 290 \text{ W}!$

V. Verallgemeinerung der Transportgesetze

	Was strömt? Stärke?		Was treibt die Strömung?		Zusammenhang?	
Volumen- transport	V	$J_V = \frac{\Delta V}{A \cdot \Delta t}$	p	$-\frac{\Delta p}{\Delta l}$	$J_V = -\frac{R^2}{8\eta} \frac{\Delta p}{\Delta l}$	
Stoff- transport	ν	$J_{\nu} = \frac{\Delta \nu}{A \cdot \Delta t}$	c*	$-\frac{\Delta c}{\Delta x}$	$J_{\nu} = -D \frac{\Delta c}{\Delta x}$	
Ladungs- transport	q	$J_q = \frac{\varDelta q}{A \cdot \varDelta t}$	φ	$-rac{arDeta arphi}{\Delta l}$	$J_q = -\sigma \frac{\varDelta \varphi}{\varDelta l}$	
Energie- transport	E	$J_E = \frac{\Delta E}{A \cdot \Delta t}$	T	$-\frac{\Delta T}{\Delta x}$	$J_E = -\lambda \frac{\Delta T}{\Delta x}$	
allgemein	$\mathcal{X}_{\mathrm{ext}}$ extensiv Gr.	$J = \frac{\Delta x_{\text{ext}}}{A \cdot \Delta t}$ e Strom- dichte	$\mathcal{Y}_{ ext{int}}$ intensive Gr.	$X = -\frac{\varDelta y_{\rm int}}{\varDelta x}$ termodynamische Kraft	J = LX onsagersche Beziehung	

* Im allgemeinen Fall μ

Wärmeleitung

$$T_{\text{K\"orper}} = 28^{\circ}\text{C}$$

 $T_{\text{Umaebung}} = 20^{\circ}\text{C}$ $P \approx 40 \text{ W}$

- ➤ Luft ↔ Wasser als Umgebung
- > Strömungen! (z. B. Wind)

Verdunstung

> hohe spez. Verdampfungswärme von Wasser: ≈ 2400 kJ/kg (bei 30°C) !!

> Wasserverlust:

ständig ≈ 50 ml/h

bei Extrembedingungen

≈ 1600 ml/h ===> ≈ 1000 W!!

> Strömungen! (z. B. Wind)

Extensive Größe: o additiv

Im Gleichgewicht proportional zur Ausbreitung des Systems
 In Transportprozessen: die transportierte Größe

Intensive Größe:

o nicht-additiv
o Im Gleichgewicht überall gleich in dem System

In Transportprozessen: die sich ausgleichende Größe

Gleichgewicht: es gibt keine Transportprozesse.

0. Hauptsatz der Thermodynamik: Gleichgewicht \Leftrightarrow homogene Verteilung der intensiven Größen

inhomogene Verteilung der intensiven Größen ⇒ Transportprozesse

Stärke und Richtung des Transportprozesses:

Onsagersche Beziehung

Richtung: homogene Verteilung

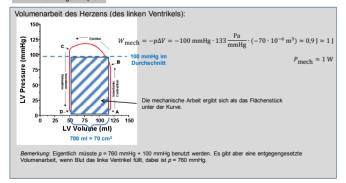
2. Hauptsatz der Thermodynamik

Irreversibilität

VI. Energetische Beziehungen (Thermodynamik)

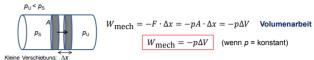
System Umwelt

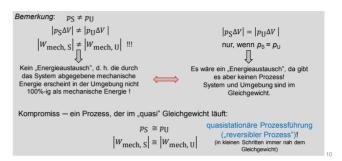
Ein Anwendungsbeispiel:



2. Energieaustausch (Arbeit) in den einzelnen Wechselwirkungen

a) Volumentransport = mechanische Ww.





b) Elektr. Ladungstransport = elektrische Ww: $W_{\rm elektr} = \varphi \Delta q$ (wenn φ = konstant)

$$\left. egin{align*} w_{
m mech} &= -p\Delta V \\ w_{
m elektr} &= \varphi \Delta q \end{array}
ight.
ight.
ight.
m Verall gemeinerung: \ W &= y_{
m int} \cdot \Delta x_{
m ext} \ .
ight.$$

c) Stofftransport = chemische Ww: $W_{\rm chem} = \mu \Delta \nu$ (wenn μ = konstant)

Das chemische Potenzial zeigt also um wieviel Joule die Energie des Systems zunimmt, wenn die Stoffmenge im System um 1 mol erhöht wird.

d) Energietransport = thermische Ww:

$$Q=W_{ ext{therm}}=T\Delta?=T\Delta S$$
 (wenn T = konstant)

Entropie (entrepein (gr) = umkehren \odot)

Emmanuel Clausius (1822-1888) Physiker

- 3. Innere Energie (E): Summe aller kinetischen und potenziellen Energien innerhalb des Systems
- 4. Erster (1.) Hauptsatz der Thermodynamik

Energieerhaltung
$$\Rightarrow$$
 $\Delta E = W_{\mathrm{mech}} + W_{\mathrm{elektr}} + W_{\mathrm{chem}} + W_{\mathrm{therm}}$ $\Delta E = W + Q$ $\Delta E = -p\Delta V + \varphi \Delta q + \mu \Delta v + T\Delta S = \sum y_{\mathrm{int}} \cdot \Delta x_{\mathrm{ext}}$ Energieerhaltung $\Rightarrow \Delta E_{\mathrm{S}} + \Delta E_{\mathrm{U}} = 0$ $\Delta E_{\mathrm{S}} = -\Delta E_{\mathrm{U}}$ $\Delta E_{\mathrm{S}} = -\Delta E_{\mathrm{U}}$ System (S)
$$|\Delta E_{\mathrm{S}}| = |\Delta E_{\mathrm{U}}|$$
 (V). q und v werden auch erhalten) aber!
$$|p_{\mathrm{S}}\Delta V| \neq |p_{\mathrm{U}}\Delta V|$$

$$|\varphi_{\mathrm{S}}\Delta q| \neq |\varphi_{\mathrm{U}}\Delta q|$$

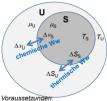
$$|\mu_{\mathrm{S}}\Delta v| \neq |\mu_{\mathrm{U}}\Delta v|$$

$$|\mu_{\mathrm{S}}\Delta v| \neq |\mu_{\mathrm{U}}\Delta v|$$

$$|T_{\mathrm{S}}\Delta S| \neq |T_{\mathrm{U}}\Delta S|$$
 13

6. Zweiter (2.) Hauptsatz der Thermodynamik: In einem isolierten System verlaufen spontane Prozesse nur in der Richtung des Ausgleichs der intensiven Größen.

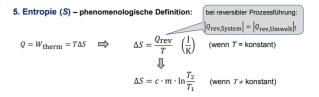
Beispiel: Konzentrationsausgleich (Ausgleich des chemischen Potenzials) zwischen System (S) und Umwelt (U)

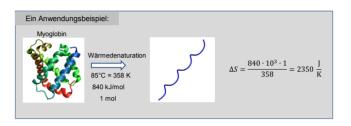


- stabile Wand ⇒ keine mechanische Ww
- · elektrische Ww wird vernachlässigt
- thermisches Gleichgewicht: T_S = T_H = T

	$\Delta E_{S} = -\Delta E_{U} \rightarrow \Delta E_{S} + \Delta E_{U} = 0$						
	$\Delta v_{S} = -\Delta v_{U}$						
	$\Delta E_{S} = \mu_{S} \cdot \Delta \nu_{S} + T \cdot \Delta S_{S} \rightarrow \Delta S_{S} = \frac{\Delta E_{S} - \mu_{S} \cdot \Delta \nu_{S}}{T}$						
	$\Delta E_{\rm U} = \mu_{\rm U} \cdot \Delta \nu_{\rm U} + T \cdot \Delta S_{\rm U} \rightarrow \Delta S_{\rm U} = \frac{\Delta E_{\rm U} - \mu_{\rm U} \cdot \Delta \nu_{\rm U}}{T}$						
	$\boxed{\Delta S = \Delta S_{\rm S} + \Delta S_{\rm U} = \underbrace{\frac{\Delta S_{\rm S} - \mu_{\rm S} \cdot \Delta \nu_{\rm S}}{T} + \underbrace{\frac{\Delta V_{\rm U}}{T} - \mu_{\rm U} \cdot \Delta \nu_{\rm U}}_{T} = }$						
w	$= \frac{\Delta v_{\rm S}}{T} \cdot (\mu_{\rm U} - \mu_{\rm S})$						

		$(\mu_{\text{U}} - \mu_{\text{S}})$	$\frac{\Delta v_{S}}{T}$	ΔS
	$\mu_{\mathrm{U}} < \mu_{\mathrm{S}}$	negativ	negativ	positiv
Alle Möglichkeiten:	$\mu_{\mathrm{U}} > \mu_{\mathrm{S}}$	positiv	positiv	positiv
	$\mu_{\text{U}} = \mu_{\text{S}}$	= 0	= 0	= 0







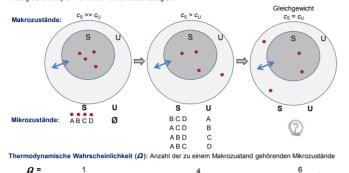
Jetzt wird das System neu definiert: das frühere System + Umwelt. Das ist schon isoliert.

Zweiter (2.) Hauptsatz der Thermodynamik: In einem isolierten System verlaufen spontane Prozesse nur in die Richtung der Entropiezunahme.

Entropie: Sie ist keine Erhaltungsgröße, sie wird in Ausgleichsprozessen produziert.

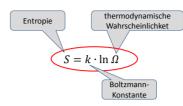
7. Entropie (S) – statistische Definition:

Das gleiche Beispiel wie früher: Konzentrationsausgleich

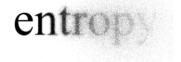


In dieser Richtung nehmen zu: ✓ Ω

- Entronie
- ✓ "Unordnung"
- ✓ "Unsicherheit und Informationsgehalt eines Experimentes



Die Entropie is ein Maß für die "Unordnung".



Ludwig Eduard Boltzmann (1844-1906) Physiker

18