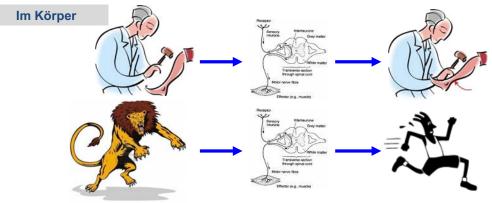
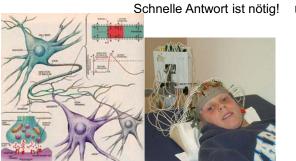
Medizinische Biophysik 2017. 04. 24.


I. Membranpotenzial


- 1. Ruhepotenzial Gleichgewichtspotenzial (Nullstrompotenzial)
 - Transportmodell, Goldman-Hodgkin-Katz-Gleichung
- 2. Lokale (elektrotonische) Änderungen des Membranpotenzials
- 3. Aktionspotenzial
- **4. Anwendungen** O Diagnostik: Messung der Biopotenzialen (EKG, EEG, ...)
 - o Elektroreizung, Reizdauer-Stromstärke-Diagramm (Reizcharakteristik)

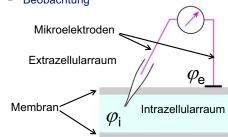
II. Anwendungen des elektrisches Stromes in der Therapie

- Galvanisation
- Iontophorese
- Defibrillator
- Herzschrittmacher
- Reizstromtherapie
- HF-Wärmetherapie, Sinusoszillator
- HF-Chirurgie

Diffusion?

Wärmeleitung?

Strömung?


Elektrischer Strom?

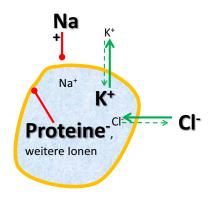
I. Membranpotenzial

1. Ruhepotenzial

Beobachtung

$$\Delta \varphi = \varphi_{\rm i} - \varphi_{\rm e} < 0$$

Zelle	$\Delta \varphi_{\rm m} ({\rm mV})$
Tintenfisch-Riesenaxon	-62
Froschmuskel	-92
Rattenmuskel	-92

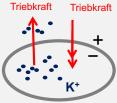

Bezeichnungen: $\Delta \varphi$, $\Delta \varphi_{\rm m}$, φ , U, $U_{\rm m}$, E, ...

Erklärung

Eine andere Beobachtung ist die inhomogene Ionenverteilung:

		Intrazelluläre Konzentration (mmol/l)			Extrazelluläre Konzentration (mmol/l)		
Zelle		Na+	K+	Cl-	Na+	K+	CI-
Tintenfisch-Riesen	axon	72	345	61	455	10	540
Froschmuske	el	20	139	3,8	120	2,5	120
Rattenmusk	el	12	180	3,8	150	4,5	110

Donnan Modell (Gleichgewichtsmodell)

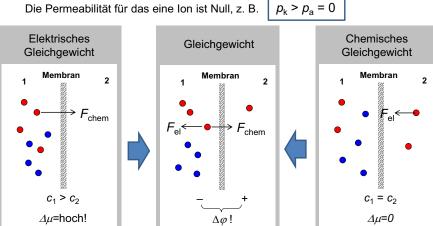

Erklärung

Eine andere Beobachtung ist die inhomogene Ionenverteilung:

	Intrazelluläre Konzentration (mmol/l)		Extrazelluläre Konzentration (mmol/l)			A = (=17)	
Zelle	Na+	K+	CI-	Na+	K+	CI-	$\Delta \varphi_{\rm m} ({\rm mV})$
Tintenfisch-Riesenaxon	72	345	61	455	10	540	-62
Froschmuskel	20	139	3,8	120	2,5	120	-92
Rattenmuskel	12	180	3,8	150	4,5	110	-92

"Gleichgewichtsmodell":

chemische elektrische Triebkraft


Wenn Gleichgewicht herrscht, dann müsste das Ruhepotenzial der Nernst-Gleichung entsprechen (Z. B. für K⁺-Ionen und Tintenfisch-Riesenaxon):

Gleichgewichtspotenzial (Nullstrompotenzial) für K+:

$$\Delta \varphi_{\text{eq}} = -\frac{RT}{F} \ln \frac{c_{\text{i}}}{c_{\text{e}}} = -\frac{8,31 \cdot 293}{96500} \ln \frac{345}{10} = -0,089 \text{ V} = -89 \text{ mV}$$

Das gemessene Membranpotenzial: $\Delta \varphi_{\rm m} = -62 \text{ mV}$

Das Modell stimmt nicht, es gibt kein Gleichgewicht! Ständiger K+-Ausstrom! Die Permeabilität für das eine Ion ist Null, z. B.

 $\mu_{e1} = \mu_{e2}$

Kation (k)

 $\Delta \varphi = 0$

Elektrochemisches Potenzial (J/mol):

 $\mu_e = \mu + F \cdot \varphi$

Anion (a)

Nernst-Gleichung:

 $\Delta \varphi = \varphi_2 - \varphi_1 = -\frac{RT}{F} \ln \frac{c_2}{c_1}$

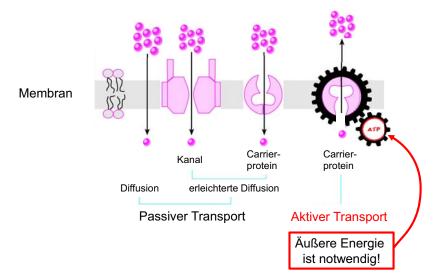
Zelle	Aus der Nei	nst-Gleichung	A (2 (22))	
Zene	Na ⁺	K ⁺	Cl-	$\Delta \varphi_{\mathrm{m}} \left(\mathrm{mV} \right)$
Tintenfisch-Riesenaxon	+46	-89	-55 ◆	-62
Froschmuskel	+45	-101	-87 ◀	-92
Rattenmuskel	+64	-93	-85 ◆	-92

 $\Delta \varphi$ = hoch!

Es gibt kein Gleichgewicht! Ständiger K⁺-Ausstrom, Na⁺-Einstrom, und ein wenig Cl⁻-Ausstrom!

Die Ausströme müssen Kompensiert werden um einen "steady-state"* Zustand zu erreichen

*,,steady state" ist eine Situation, in welchem sind alle Parameter des Systems konstant, obwohl die gängige Prozesse nach Veränderung


diese Parameter streben.

Aktive Prozesse (aktiver Transport) Energievebrauch!

■ Transportmodell Ständige Diffusion von Ionen mit unterschiedlichen Permeabilitäten

⇒ Diffusionspotenzial

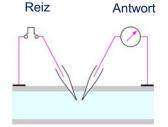
 \Rightarrow Rücktransport (aktiv)

Zusammenhang Tung V. Zusammenfassung Was Stärke? Warum? strömt? Ladungs- $A \cdot \Delta t$ Δl $A \cdot \Delta t$ transport $\bar{\Delta p}$ ΔV Volumen- $8\eta \Delta l$ $A \cdot \Delta t$ Δl $A \cdot \Delta t$ transport $\Delta \nu$ Δc Stoff- $A \cdot \Delta t$ Δx transport Δx ΔT ΔE Energie-E $A \cdot \Delta t$ $A \cdot \Delta t$ transport Δx $\overline{J} = LX$ allgemein y_{int} termoextensive onsagersche Stromintensive dynamische Gr. dichte **Beziehung** Gr. Kraft

Transportmodell

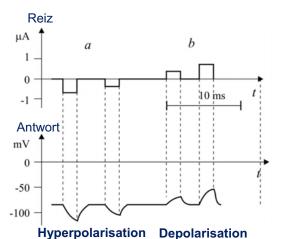
Ständige Diffusion von Ionen mit unterschiedlichen Permeabilitäten

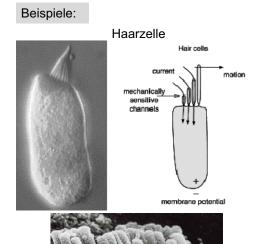
⇒ Diffusionspotenzial

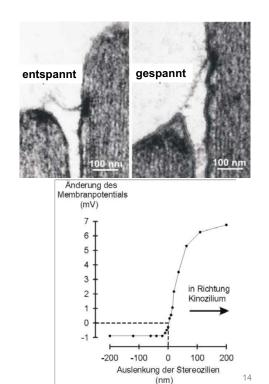

⇒ Rücktransport (aktiv)

Goldman-Hodgkin-Katz-Gleichung:

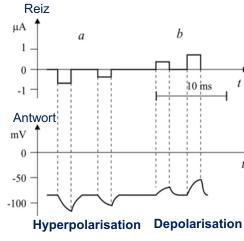
$$\Delta \varphi = -\frac{RT}{F} \ln \frac{p_{Na} c_{Na}^{i} + p_{K} c_{K}^{i} + p_{Cl} c_{Cl}^{e}}{p_{Na} c_{Na}^{e} + p_{K} c_{K}^{e} + p_{Cl} c_{Cl}^{i}}$$

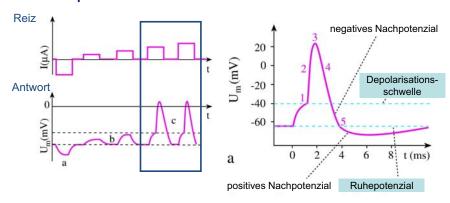

	φ(gerechnet) (mV)	φ(gemessen) (mV)
Tintenfisch-Riesenaxon	-63	ĕ -62
Froschmuskel	-91	≈ -92


2. Lokale (elektrotonische) Änderungen des Membranpotenzials



12



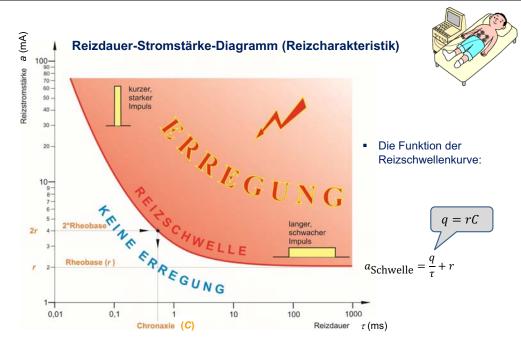

Extrazellularraum 5 nm Lipiddoppel-schicht = Ionenkanal = Widerstand Kapazität Intrazellularraum Extrazellularraum Intrazellularraum

Elektrisches Modell der elektronischen Änderung des Membranpotenzials

Siehe: Aufladung und Entladung des RC Kreises

3. Aktionspotenzial

4. Anwendungen o Diagnostik: Messung der Biopotenzialen (EKG, EEG, ...)

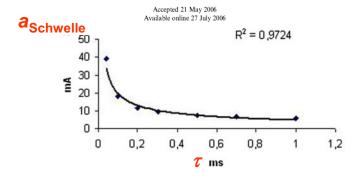

Elektroreizung

17

- Rheobase (r): die kleinste Reizstromstärke, die noch Erregung auslösen kann
- Chronaxie (C): die zur doppelten Rheobase gehörende Reizdauer

Klinisches Beispiel

Clinical Neurophysiology 117 (2006) 2069-2072


Stromstärke 🔪

Reizdauer www.elsevier.com/locate/clinph

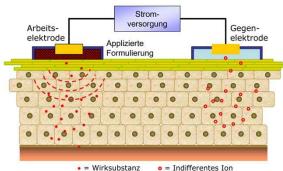
Effects of sex and age on strength-duration properties

Deniz Yerdelen a,*, Hilmi Uysal b, Filiz Koc a, Yakup Sarica a

^a Department of Neurology, Cukurova University Medical School, Adana, Turkey
^b Ankara Physical Medicine and Rehabilitation Education and Research Hospital of Ministry of Health, Turkey

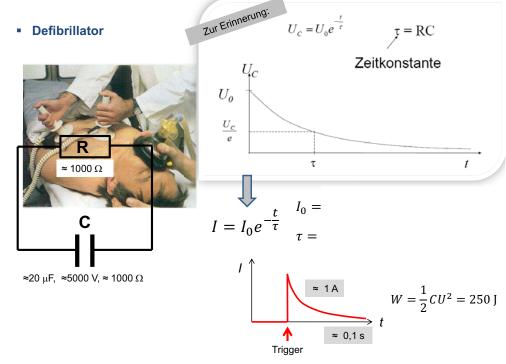
II. Anwendungen des elektrisches Stromes in der Therapie

Galvanisation

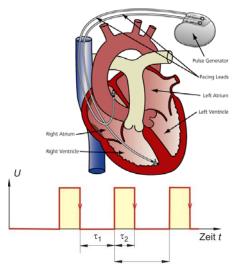


Gleichstrom, ≈ mA, ≈10 min

- Schmerzlinderung
- Durchblutungsförderung


Iontophorese

Gleichstrom, ≈ mA, ≈10 min



Schnelle Anreicherung des Wirkstoffes gezielt am Krankheitsort unter Umgehung des Magen-Darm-Traktes

18

Periodendauer: $T = \tau_1 + \tau_2$

Tastverhältnis: $\frac{\tau_2}{\tau_1 + \tau_2} \cdot 100\%$

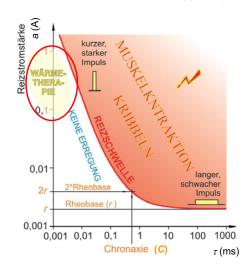
Rechteckimpulse, \approx ms, \approx s, \approx 1 V, \approx 200 Ω

 $I = \frac{U}{R} = 5 \text{ mA}$ > a_{Schwelle}

Astabiler Multivibrator (siehe Praktikumsstoff!)

Reizstromtherapie

Rechteckimpulse (Einzelimpulse, Serienimpulse)

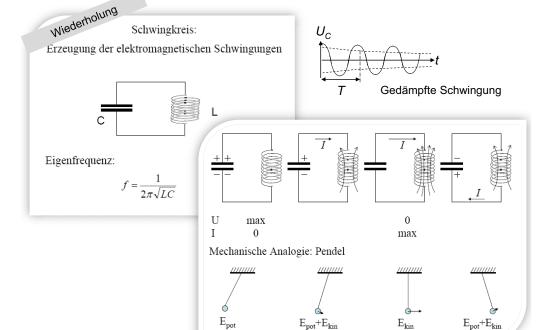

Astabiler oder monostabiler Multivibrator (siehe Praktikumsstoff!)

23

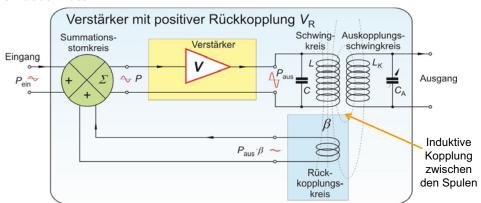
• **HF-Wärmetherapie** Wärmewirkung ohne Reizwirkung!

zur genügenden Wärme: ≈ 0,1 A

$$a_{\text{Schwelle}} = \frac{rC}{\tau} + r$$
 \Rightarrow $\tau = \frac{rC}{a_{\text{Schwelle}} - r} =$


 $f \ge 10^5 \mathrm{Hz}$

 \prod


Hochfrequenter (HF) Wechselstrom

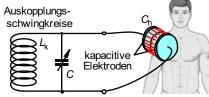
Siehe Praktikum "Sinusoszillator"!

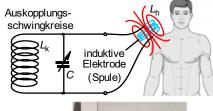
Erzeugung von hochfrequenten elektromagnetischen Schwingungen:

Sinusoszillator

$$V_R = \frac{V_U}{1 - \beta \cdot V_U} \quad \left\{ \right\}$$

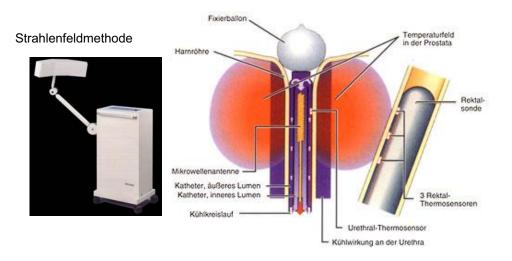
Siehe Praktikum "Sinusoszillator"!


Sinusoszillator, wenn $V_U \cdot \beta = 1$, auch ohne Eingangssignal

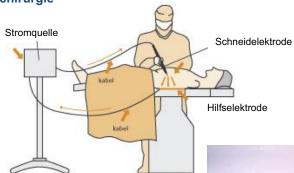

26

Kurzwellentherapie (27 MHz)

Kondensatorfeldmethode



Spulenfeldmethode



27

- Dezimeterwellentherapie (433 MHz)
- Mikrowellentherapie (2400 MHz)

HF-Elektrochirurgie

