Optik

Ausschlieslich für den Unterrichtsgebrauch

Optik ist eine Spezialgebiet der Physik, das Eigenschaften elektromagnetischer Strahlung im sichtbaren Bereich behandelt.

2

Optik

- 1. "Geometrische Optik" (optische Geräte)
 - * Typische Abmessungen D der abbildenden System (Blenden, Linsen) sind groß gegen die Wellenlänge λ des Lichts

2. "Wellenoptik"

- Typische Abmessungen D der abbildenden System (Blenden, Linsen) sind klein gegen die Wellenlänge λ des Lichts
- Wellencharakter des Lichts führt zu Erscheinungen wie Beugung und Interferenz

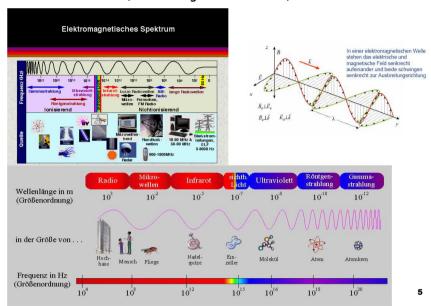
3. "Quantenoptik"

• Teilchencharakter des Lichts → Photon

Licht

Eigenschaften des Lichts

•Antikes Modell: Sehstrahlen, vom Auge ausgehend, tasten die Gegenstände ab



·Heute: Teilchen- und Wellenmodell

Licht kann entweder als Strahl von **Teilchen** oder als elektromagnetische *Welle* betrachtet werden

Licht als EMW (elektromagnetische Welle)

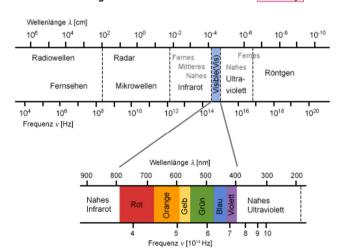
Licht als EMW (elektromagnetische Welle)

Das Licht ist eine elektromagnetische Welle, das sich geradlinig mit der Lichtgeschwindigkeit c ausbreitet.

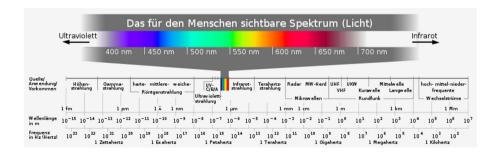
Im Vakuum ist die Geschwindigkeit für alle elektromagnetische Wellen gleich:

$$C_0 = (299 792,46 \pm 0,018) \text{ km/s} \approx 3 \cdot 10^8 \text{ m/s}$$

Olaf Römer - 1676: Verfinsterungen des Jupitermondes Io $c \approx 2.3 \cdot 10^8 \text{ m/s}$


Bradley - 1727: Aberration des Sternenlichtes

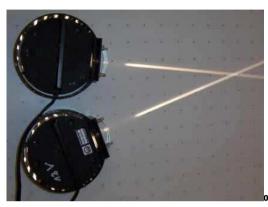
6


Licht als elektromagnetische Welle

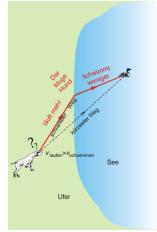
Licht als elektromagnetische Welle

Geometrische Optik

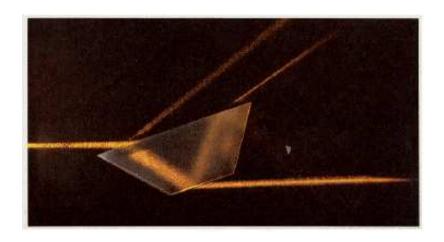
Typische Abmessungen D der abbildenden System (Blenden, Linsen) sind groß gegen die Wellenlänge λ des Lichts

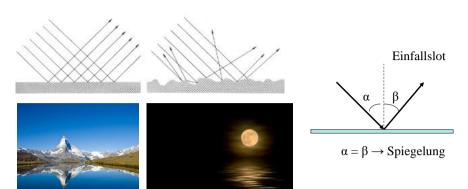

 $D \gg \lambda$

9

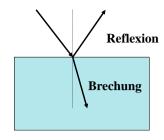

Das Modell "Lichtstrahl"

- > geradlinige Ausbreitung des Lichtes
- > Lichtwege sind umkehrbar
- > kreuzende Lichtstrahlen beeinflussen sich nicht


Das Fermatsche Prinzip


Die Ausbreitung des Lichtes zwischen zwei Punkten verläuft so, daß die verbrauchte Zeit minimal ist.

Reflexion und Brechung

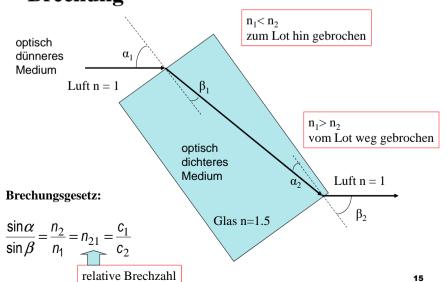


Reflexion des Lichtes

13

Brechzahl

Material	п
Vakuum	1
Luft (1 atm)	1,00027
Wasser	1,333
Augenlinse	≈1,34
Ethylalkohol	1,361
Quarzglas	1,459
Flintglas	1,613
Diamant	2,417

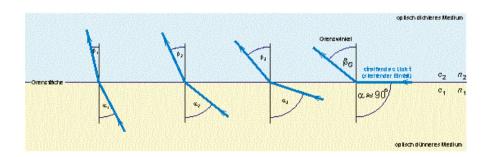

Vakuum Medium $\begin{array}{c|c} c_0 & c_M \\ \hline \text{Lichtgeschwindigkeit} \end{array}$

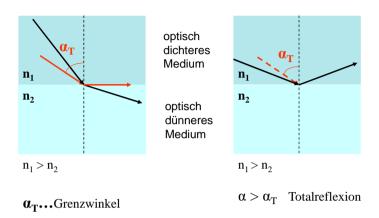
absolute Brechzahl:

 $n = \frac{c_0}{c_{\rm M}} \ge 1$

14

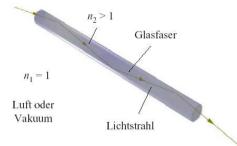
Brechung



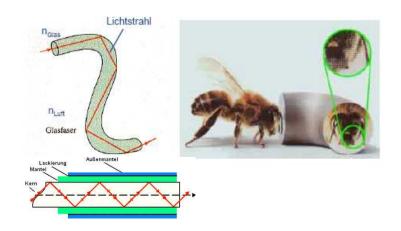

bei 20° C

und 584 nm

Totalreflexion

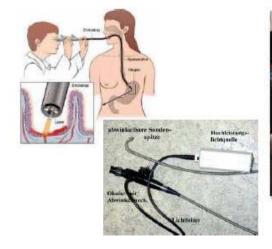


Totalreflexion

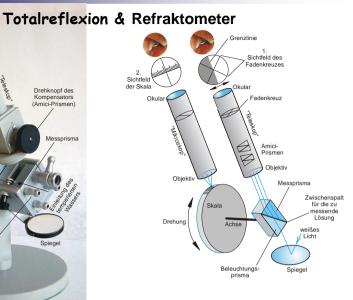

Anwendung:

- ➤ Lichtleiter Endoskopie
- ➤ Faseroptik optische
 Informationsübertragung

18

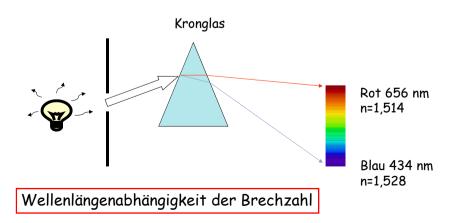


Totalreflexion & Endoskopie



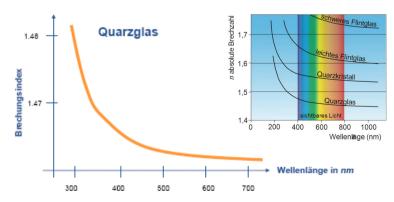
Totalreflexion & Endoskopie

7


Dispersion und Prisma

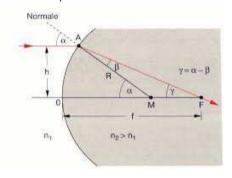
Weißes Licht wird zerlegt Kurzwelliges Licht (violett) wird stärker gebrochen als langwelliges (rot)

22


Dispersion und Prisma

Dispersion

Der Brechungsindex ist für alle Gläser wellenlängenabhängig, d.h. $n = n(\lambda)$. Für die meisten Gläser nimmt n mit abnehmender Wellenlänge zu, d.h.BLAU wird stärker gebrochen als ROT (normale Dispersion)



Ausschlieslich für den Unterrichtsgebrauch

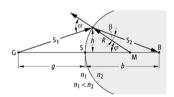
Brechung an einer sphärischen Fläche

http://vorsam.uni-ulm.de/

$$h = R \sin \alpha = f \sin \gamma$$
$$\gamma = \alpha - \beta$$
$$\Rightarrow f = \frac{\sin \alpha}{\sin(\alpha - \beta)} \cdot R$$

Mit Brechungsgesetz und unter der Annahme paraxialer Strahlen ergibt sich dann für die Brennweite:

$$f = \frac{n_2}{n_2 - n_1} \cdot$$


Brechkraft (D)

$$D = \frac{n_2}{f} = \frac{n_2 - n_1}{R}$$

n_2-n_1	R	D	
+	+	+	Fokussierung
-	+	-	Zerstreuung
+	-	-	Zerstreuung
-	-	+	Fokussierung

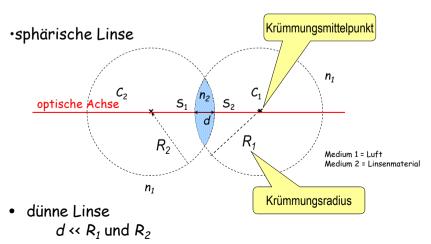
26

Optische Abbildung durch eine sphärische Grenzfläche

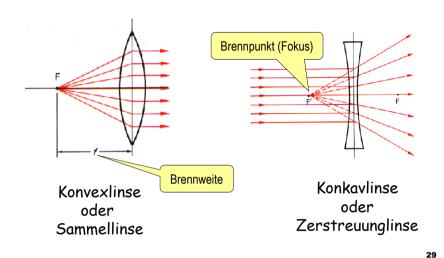
Lichtbrechung im Auge

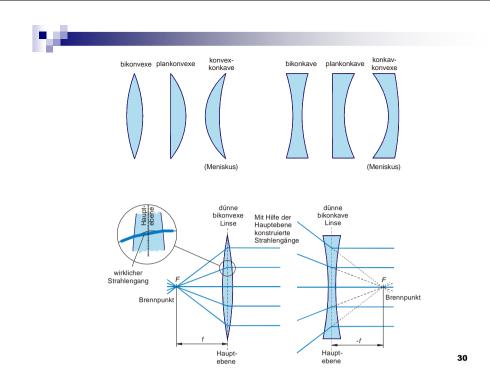
Abbildungsgesetz:

$$D = \frac{n_1}{g} + \frac{n_2}{b}$$

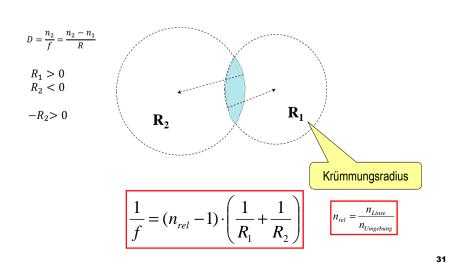

Für dünne, naheliegende Grenzflächen:

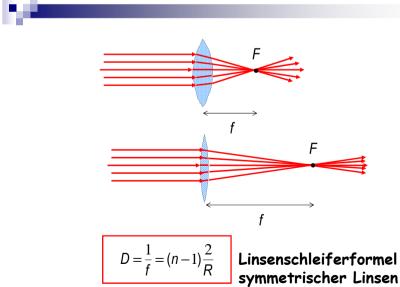
$$D_{gesammt} = D_1 + D_2 + D_3 + \cdots$$


Siehe Praktikum "Optik des Auges"

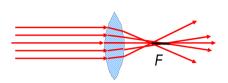


Linsen


Linsenarten

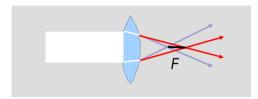


Linsenschleiferformel der dünnen Linsen



siehe Akkomodation der Augenlinse

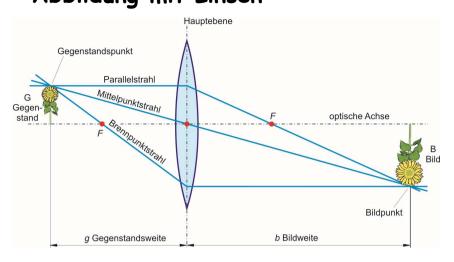
Linsenfehler


Spärische Aberration — Öffnungsfehler

Ursache: Teilnahme der achsenfernen Strahlen in der Bildentstehung

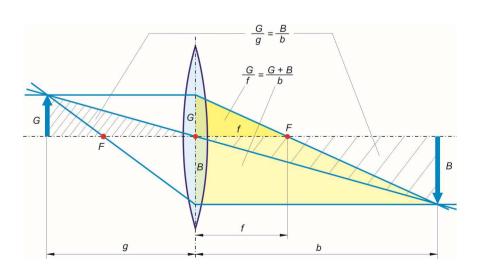
Ergebnis: eine abweichende Brennweite der nicht paraxialen Strahlen

Chromatische Aberration — Farbabweichung



Ursache: Dispersion

Ergebnis: eine etwas abweichende Brennweite der verschiedenen Farben


33

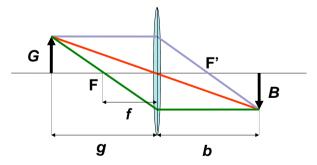
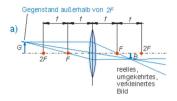
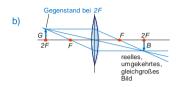
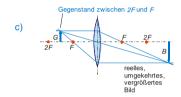
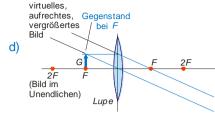

34

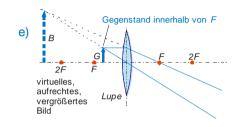
Abbildung durch Sammellinse

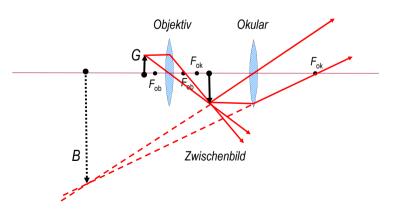

Brechkraft: $D = \frac{1}{f}$ $[D] = \frac{1}{f}$

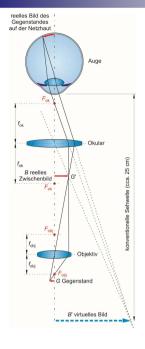

$$[D] = \frac{1}{m} = dpt (Dioptrie)$$

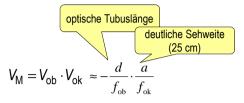

Abbildungsgleichung: $\frac{1}{f} = \frac{1}{q} + \frac{1}{k}$


Abbildungsmaßstab:






Gegenstand	Bild			
Lage	Lage	Art	Stellung	Größe
g > 2f	f < b < 2f	reell	umgekehrt, seitenvertauscht	verkleinert B < G
g = 2f	b = 2f	reell	umgekehrt, seitenvertauscht	gleichgroß B = G
f < g < 2f	b > 2f	reell	umgekehrt, seitenvertauscht	vergrößert B > G
g < f	auf der Gegenstandsseite	virtuell	aufrecht, seitenrichtig	vergrößert B > G



Das Lichtmikroskop

Maximale Vergrößerung $\approx 500x$! (über 500 leere Vergrößerung)

? s. Wellenoptik \Rightarrow