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Diffusion of ions
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Equivalent circuit model
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inward current

outward current

depolarization




Alteration of resting membrane
potential

2. “active” electric properties of the membrane in
excited state
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Andrew Fielding Huxley Alan Loyd Hodgkin
(1917-) (1914-1998)

The Nobel Prize in Physiology or Medicine
1963

“for their discoveries concerning the ionic

mechanisms involved in excitation and
inhibition in the peripheral and central
portions of the nerve cell membrane"
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() The refractory period prevents
backward movement of the action
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The trigger zone is in its refractory
period. K* gates have opened and

the Nat inactivation gates have
closed. Loss of K+ from the
cytoplasm repolarizes the membrane.
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In the distal parts of the axon,
local current flow from the
active region causes new sections
of the membrane to depolarize.

\

Local current flow

Nat entry depolarizes the
membrane, which opens
additional Nat channels.
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Positive charge flows into
adjacent sections of the
axon by local current flow.
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The diameter of frog axons and the presence or absence of
myelination control the conduction velocity.

Fiber type Average axon diameter (pm) Conduction velocity (m-s™1)
Myelinated fibers
Aa 18.5 42
AB 14.0 25
Ay 11.0 i
B Approximately 3.0 4.2
Unmyelinated fibers
c 2.5 0.4-0.5




release trom the same sites over time

- .
Postynaptic signal Postsynaptic signal

NN

Presynaptic signal
L

v




Temporal and spatial summation
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