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Optical spectroscopic techniques

What happens if a sample is illuminated by
light?

(absorbed light)

illuminating light transmitted light -
ANANNANNNAAS AANANAAN Absorption- .
spectroscopies:
UV-VIS, IR

S \

emitted light scattered Iight_
Raman and Rayleigh

Luminescence scattering

(Fluorescence and

Phosphorescence) Ramgn spectroscopy

spectroscopies Static and dynamic

light scattering

Spectroscopy
(Absorption and emission spectroscopy)

* Analysis of the wavelength dependence of the
transmitted or emitted light.

* Information:
— identification of atoms and molecules,

— detection of changes in the molecular structure
(conformation)

— determination of the concentration

Why is light absorbed or emitted?

Born-Oppenheimer approximation: Etotat = Eetectronic + Evibrationat + Erotational

E
Excited electron and
excited vibrational state* {
) S,
Excited electron state —
Vibrationally excited state.* -
Ground state  —0 *

*only for molecules! (not for atoms)

Why is light absorbed or emitted?
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UV-VIS IR Raman Fluores- Phosphorescence
absorption cence

Absorption spectroscopy
(UV-VIS)
As a reminder:
* law of absorption: J=J,-e* where y(material,c,A)

* Lambert-Beer law:

A=lg Jo
* spectrum: A(A) J

* measurement: spectrophotometer

=¢g(A)ex

(details: see pract. exc.)
reference solution (J,)
* information: identification (A,,,,), concentration (A)
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Infrared spectroscopy

* Infrared light: A=800 nm - 1 mm
MIR (mid-infrared) : 2,5-50 um
* absorption spectroscopy

* the absorbed infrared radiation excite molecular
vibrations

* very specific for the structure of the molecule

* special method for detection:
FT spectrometer

Molecular vibrations

The electrons are light (M,<<M, ,eus), they can
follow the movements of the nuclei easily,
therefore the movements of the nuclei are
independent of the movements of the
electrons.

Classical physical description: the chemical bond
is represented by a spring

Molecular vibrations:
D

L A

m; ! m,

distance of centre of mass
nuclei
D:

D
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m, known from elementary mechanics:

fot B
27 \[m,

I“I

Reduced mass: m mm,

red

m, +m,

D
VY

centre of mass

Frequency of the vibration with the reduced mass:

f= L | D ¢ 1 [D(m+m,)
2m\ m,, 2z m,m,

The wavelength: 1:C:2ﬂc\/%
f D

In the IR spectroscopy the wavenumber (V) is
used, which is the reciprocal of A:

. 11 D v: number of
A 27C My

waves in a
unit length [cm]
Example: CO
The measured wavenumber: v=2143 cm™!
- = 13
= A=4,67um = f =6,43 103 Hz = D=1875 N/m
me=2-106 kg, My=2,7-106kg
if viis known, D can be calculated
if D is known, v can be calculated

Classical vs. quantum physics

Classical physical Quantum mechanical
picture picture
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! center of mass
f = 1/D S—— 4«
2m\m,

resonance with the light with frequency f t
N =
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Normal vibrations

All the atoms vibrate

* with the same frequency but
* with different amplitude and
* in different direction.
Example: water

t
W S
/( N;r’;svcm% /( ) %?\ ( |5951‘Ill'|% ZU

symmetric stretching bending

3756 cm’!

asymmetric stretching

Normal vibrations of water

Ao o Ao

symmetric stretch asymmetric stretch bend
0 Oy0 ¢:0

librations

These are no vibrations! These are rotations!

Vibrations of the large molecules

Molecule consisting of N atoms:
* 3N degree of freedom,
3-3 are the rotations and translations
of the whole molecule
* 3N-6 vibrational degree of freedom (3N-5 for
the linear molecules)
* 3N-6 independent normal vibrations

Typical vibrational frequencies (wavenumbers)
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Example: Formaldehyde

Gas Phase Infrared Spectrum of Formaldehyde, H.C~0

L_./ Motion Off

http://mww2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/InfraRed/infrared.htm

Flavin
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Vibrations of the macromoleclues

I:I Complex global vibrations w .
Localised vibrations, e.g.: 20 @h-0
* CH, vibrations of the lipids -39 _o-da

* amid vibrations of proteins
(acetamide)

H HH H H H H H H HH H
A S s
o ¢ c \C_ o \Q/ :
{ / i i i “
antisym. v SYM. v scissoring & wagging &  twisting & racking 8 hd “)

protein denaturation

Lipids Applications

phase transitions in lipids

Absorbance
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Meersman et al. Biophys J.

Types of Vibrational Modes. Figure from Wikipedia



http://chemwiki.ucdavis.edu/@api/deki/files/1675/=Twisting.gif?size=webview
http://chemwiki.ucdavis.edu/@api/deki/files/1677/=Modo_rotacao.gif?size=webview
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Pharmaceutical applications

* synthesis: identification of the intermediate and
the end product

* determination and justification of the molecular
structure

* detection of the metabolites
* quality control (purity)

* Remark.: Lambert-Beer law is valid,
determination of concentration is possible

IR active vibration: dipole moment changes

Identification of the molecules

Absorbance
Absorbance

T T
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- Wavenumber cm™')

T
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3000
Wavenumber (cm™')

Example: Identification of molecules

cHo " I

erclobutanol 2-butanone

g = = frww n/\., ,,\ /‘/“‘\

http://mww2.chemistry.msu.edu/faculty/reusch/VirtTxtdml/Spectrpy/InfraRed/infrared.htm

The technique of the measurement : Fourier
transform spectrometer (FTIR)

conventional (dispersion) spectrometer
sample
L

JyR) I
Fourier transform spectrometer

sample
et |

J(AA),JJ()AA .)

book 6.17

s

Interferometer

standing mirror

t path A I|ght source
. ™ path B l

moving mirror <
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| 1,y Ay
sample e

W0t |

book 6.18

Luminescence spectroscopy
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UV-VIS IR Raman Fluores-
absorption cence
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Which molecues are fluorescent?

Amino acids (tryptophan, tyrosine, phenylalanine)
Fluorescent dyes
GFP

glycine

] "( I/tyroslne

new bond —

threonine

Measurable quantities in Fluorescence

Spectroscopy

* Wavelength of the exciting light

* Wavelength of the emitted light (fluor.,
phosph.)

* Time dependence of the emitted light

* Polarisation of the emitted light

* Intensity of the emitted light

Luminescence emission of molecules Luminescense
Jablonski diagram
R Quantum yield (Qp):
Vibrational “intersystem
relaxation " o
E = —e=end 0 = ks number of photons emitted
N ~ T ¥~ ks + kny  number of photons absorbed
i — 1
(Dyes, fluorescense markers Q=1)
i c /a0 ) o )
-§ \” % /,“\0 ) Luminescense llfetlme!(‘r). . excitation
g — 2 - N =Nge® 5t
S emission = emission 3
X ) £ No A
1 z I
= N 7EY :
i U ol M.
ky:Rate of photon producing transitions £ e
Fluorescence Phosphorescence 2 1
S-S, T,—S, k. Rate (probability) of non-radiative transitions PR t
T
Stokes-shift )
Kasha’s rule
% Excitation spectrum
% Emission at 340 nm Phophorescence sp. £
é Emission spectrum Exitation at 295 nm
S Excitation at 295 nm Kasha’s rule: The
s excited molecule first S > | - RN
- reaches the lowest Uz —I+ —
vibrational level and Yo Tl
photon emission occurs —_
—_—
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6.25.

always from this state to
any vibrational level of
the ground (S,) state.

Sq

Fluorescence Phosphorescence
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Comparing emission processes

_ Fluorescence Phosphorescence

Relaxation From singlet state

From triplet state

$,2Sy T,-S,

Lifetime (1) Nanoseconds

From microseconds up to

seconds

Stokes shift Smaller

Larger (because T is at

lower energy than S;)

Wanckogh ()

Excitation | | |
{

Measurement of luminescence

Spectrofluorimeter

Smple cell

spectum | || Ecitaton
\ monochromator

~ Xo lamp

emission
monochromator

%oy = CONStaNt
(absorption maximum)

FRET

Forster Resonance Energy Transfer

Energy transfers from donor without emission to acceptor in dipole-
dipole interactions. Requires spectral overlap between donor

emission and acceptor absorption.

Ex Em

X o Spectral overlap
FRET efficiency or quantum yield (E):

E= 1
1+ (/)¢

FRET Efficiancy

1o: Forster distance

—Donor___Acceptor
Em

A’tm

“Molecular ruler”

@s @5 1@ 18 28 2%

Distance (¢/R:)

FRAP

(molecular detail,not 1o scale)

Fluorescence Recovery After A . g i

Photobleaching
.

R
) B R
Photobleaching: AR
The permanent loss of

quore_scence due to photochemical ¢ e
reactions.
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Fluorescence microscope

weak, emitted

strong scattered .
‘excitation light
~—_ fiuorescent light

fluorescent
specimen

Fluorescence polarization

illumination with
polarized light

polarization degree of the emitted light is measured

The fluorescent molecule can rotate between the

absorption and the emission =

dynamic information: rotational correlation time
(how fast is the rotational diffusion?)

6.28
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Light scattering
Rayleigh Raman ervais aman
}\’scatt=}\’illum }“scatt # }“illum
(elastic) (non-elastic)
Raman scattering: E
}‘scatt¢ }‘illum = fscatt¢ fiIIum Sl
= Ephoton,scatt # Ephotcm,illum
Where is the energy?
Excites vibrations of the
molecule (as IR)
very weak (~108) :
SO I v
IR Raman
Raman Spectrometer Raman-Scattering
F"robel Vibrations are e
| specific for the T, - .
N ) molecules q
Filter wwb | corn-starch
) 1 mmnan A Nt
y P ~ f
e R Detector Raman 300 M “‘W-M’ME?JERS‘E‘
° Monochromator \ Spectroscopy 200
| ‘ |, active agent
100 \
JMLJ‘UJJL’WJU«‘\W‘w\-«ﬂ Ny
I E.g.: active agent 0 “ o D 5
content of a tablet Rarranshift [cm]
http://www.igb. fraunhofer.
i ie-sp! i il pie-tablette.html

\ Tablet P3 |

| |i e

MWILEY

PHARMACEUTICA|

APPLICATIONS
or RAMAN
SPECTROSCOPY

Handheld Raman spectrometer for
identification of materials

“l
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Pharmaceutical application

Rayleigh scattering

Size of the particle: d << A

The scattered intensity: de
JoN o
Information: size, contentration (quantity)
(e.g. colloids)

scatt

Meaurement of the Rayleigh scattering

if 3, ae<<dy

scatt

J.catt IS measured
(Nephelometry)

If ‘]scatt ~ ‘]0

J is measured
(turbidimetry)

Light source

o

sample
Detector (a)

Detector (b)

The same technique as for the absorption spectrosopy but
now J is reduced due to the scattering (and not due to

absorption).




