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History of respiratory biophysics

* Aristotle (300 BC): respiration cools the heart and blood
* Galenus (170 BC): breathing adds something to the blood (“spiritus vitalis™)

* Leonardo daVinci (1452-1519): animals die in a closed room where air
refreshment is blocked.

* Vesalius (1543): the animal dies of its chest is opened, but survives if its lung is
rythmically ventilated.

* Gas laws (17-18. century, Clausius, Clapeyron, Boyle, Mariotte, Gay-Lussac,
Charles)

* Black (1754): discovery of carbon dioxide. Priestley (1771): discovery of
oxygen.

 "“Blood gases’: Magnus (1837), Haldane (1900)
* Surfactant: Neergaard (1920s), Pattle and Clements (1950s)



Relevant physical and physico-chemical laws

I. Ideal gas law (derives from Clausius-Clapeyron’s, Boyle-Mariotte’s, Charles’s laws): Relationship
between the pressure, volume, temperature and amount of gas.

P = pressure (Pa)
V = volume (m?3)

_ | = |
PV = nRT e e 14 jimol)

T = absolute temperature (K)

Pressure-volume isotherms

2. Dalton’s law (John Dalton, 1801): The total pressure exerted by the mixture of non-reactive gases is

equal to the sum of the partial pressures of individual gases.
n

— pi = partial pressure of the ith gas
total Pi n = number of gases in the mixture

i=1 [pi = ProtarXr; r = ratio of the gas in the mixture]

3. Henry’s law (William Henry, 1803): At a constant temperature, the amount of a given gas that dissolves in a given
type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.

p — k C p = partial pressure (Pa; atm)
H kn = Henry’s constant (I - atm/mol)
¢ = concentration of dissolved gas (mol/l)

4. Young-Laplace equation: Describes the capillary pressure difference sustained across the interface
between two static fluids (e.g., water, air) due to surface tension.

b 2’)/ p = pressure (Nm-2)
In a sufficiently narrow tube: Ap — — Y = surface tension (Nm-!; Jm-2)
R R = radius of curvature
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respiratory system

2. Tube system
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3. Gas exchange

surface

Alveoli
CO,0ut Qo,In

e Alveole: open thermodynamic
system

*Surface for gas exchange.

* Number: ~300 million (N.B.:
225=33,554,432)

*Size (d~200 pm),
area (5x10-7 m2/alveolus)

* Total alveolar area:
~100 m2

e Alveolar wall (~0.5 pm):
alveolar epithelium (~O 2 pm)
basal membrane 1 0.1 p
capillary endothelium (~O. um)

*Driving force of gas exchange:
diffusion (Fick’s laws!)

e The partial pressures of gas
phases tend to equilibrate

with blood plasma gas
tensions.



Respiratory cycle

|. Mechanical control 2. Changes in physical
parameters
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| cmH2O =0.1 kPa = 0.7 mmHg
* Eupnoe: normal breathing (14-16/min)

* Polypnoe, tachypnoe: number of breaths >16/min
* Dyspnoe: shortness of breath




Capacity: sum of volumes
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Processes of the respiratory cycle

|. Lung cyclically expands and contracts

2. Gas flows in
alrways
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o Effect: the smaller the surface tension, the
smaller pressure needed to keep alveoli open
(for a given pressure, smaller alveoli can be

% opened) (Young-Laplace equation!).

*Restrictive diseases: pulmonary compliance is
reduced (fibrosis, lack of surfactant, etc.).

Hagen-Poiseuille’s law

V_ mrt dp

t 81 di

V = volume

t = time

(V/t = Q = flow intensity)
r = tube radius

N = viscosity

p = pressure

| = length of tube

(dp/dl = pressure gradient,
maintained by p,-p,)

*Normally (eupnoe): flow is
laminar.

* Tachypnoe or disease:
turbulent airflow

e Obstructive diseases: pulmonary
airflow is compromised
(COPD - “chronic obstructive
pulmonary disease”).



Dynamic analysis of respiration

Flow (liters per second)
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Respiratory work

* Volume change against average transmural pressure
* Minute volume (MV) =7 |

* Breathing rate (BR) = |4/min

* Pressure (Pwm) = 0.7 kPa

e Respiratory volume (V) = 0.5 | (5x10-4 m3)

* Work (W) = Py xV = 0.35 J/inspiration (294 )/h)

e At large loads it may reach 8400 J/h



BIOPHYSICAL BASIS OF
PHYSICAL EXAMINATION



Physical examination

® |[nspection
® Palpation
® Percussion

® Auscultation



Inspection

What is this?
Visual examination of the patient

What do we visualize?
Behavior, morphology, structure, color

Relationship to biophysics:
Absorption spectroscopy
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Light absorption

Hemoglobin From the general law of
7 \ radiation attenuation:
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Examples

Cyanosis Icterus Erythema
(rise in deoxygenated (jaundice, (redness of the
hemoglobin) hyperbilirubinaemia) skin)



Palpation

What is this?
Examining the patient by touching

What do we palpate?
Size, shape, location, firmness
(elasticity, viscosity)

Relationship to biophysics:
Biomechanics



Viscoelasticity

Spring-dashpot model Schematic mechanism
E
“— n L,

Velocity gradient versus shear stress function of
newtonian and non-newtonian fluids

A St. Venant Newton Bingham

D

Casson

> Example: edema (pitting)



Percussion

What is this?
Examining the patient by locally striking

(tapping) with short, sharp blows

What do we examine by percussion?
Material content, shape, boundaries

Relationship to biophysics:
Sound generation, propagation and detection



ounds and their spectra
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Respiratory system as a box

Chest wall ~=1

Parietal pleura 7/ 2 St

Visceral Pleura _f [ ] \ . Percussion sounds may be
| A0\ N\ flat (muscle), dull (liver), or
| il \ resonating (normal lung)

Pleural “cavity” —ij

Diaphragm ——1—»

Boundaries of the diaphragm, heart, liver (and other,
parenchymal organs) may be detected by percussion.



Auscultation

What is this?

Examining the patient by listening (with a stethoscope)
for sounds (murmurs) within the body

What do we examine by auscultation?
Loudness, pitch, tone, duration, temporal variation
(rythm)

Relationship to biophysics:
Sound generation, propagation, fluid flow, turbulence



Korotkow’s sound
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v=flow rate (m/s)
r=tube radius (m)
p=density of fluid (kg/m3) Turbulent flow (R > ~1160)

n=viscosity (Ns/m?2) causing sound effects

» Constriction of artery with cuff - flow rate
increases according to continuity equation

* If flow rate exceeds the critical velocity, then
turbulence, hence sound effect occurs.




Heart sounds and murmurs

Sources: mechanical vibrations (e.g., valve closing), turbulent flow
Conductance: towards blood-filled compartments
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Respiratory sounds

Sources and mechanisms:

| .mechanical vibrations
(rubbing noise)

2.mechanical resonance
(organ-pipe action)

3.bubbling through fluid
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