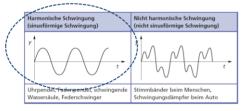
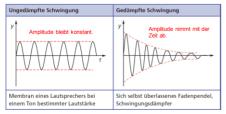
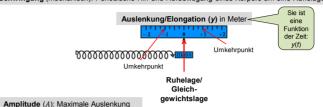

Grundlagen der medizinischen Biophysik

5. Vorlesung 26. 09. 2019


Mechanik - Schwingungen und Wellen

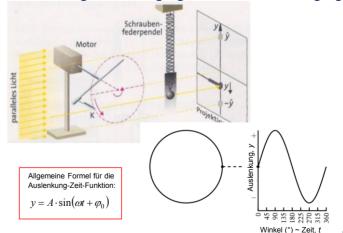


- 1. Grundbegriffe der Schwingungslehre
- 2. Schwingungstypen
- 3. Harmonische Schwingung
- 4. Rücktreibende Kraft
- 5. Eigenscheingung und Eigenfrequenz
- Federpendel
- 7. Erzwungene Schwingung
- 8. Resonanz
- 9. Grundbegriffe der Wellenlehre
- 10. Wellenlänge, $c = \lambda \cdot f$
- 11. Transversal- und Longitudinalwellen
- 12. Mechanische Wellen Schall
- 13. Elektromagnetische Wellen Licht
- 14. (Lineare) Polarisation
- 15. Reflexion und Brechung
- 16. Interferenz
- 17. Stehende Wellen
- 18. Beugung (Diffraktion)
- 19. Huygenssches Prinzip


Schwingungstypen

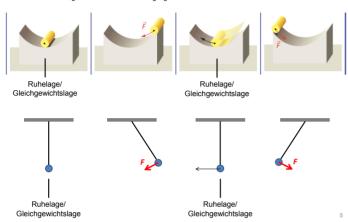
Grundbegriffe der Schwingungslehre

Oszillator: Physikalisches System, das Schwingungen ausführen kann (z.B. Federpendel) Schwingung (mechanisch): Periodische Hin-und Herbewegung eines Körpers um eine Ruhelage


Zur Erinnerung:

- Periodenzeit/Periodendauer/Schwingungsdauer (T): Zeitdauer einer Schwingung/Periode
- Frequenz/Schwingungszahl (f): Anzahl der Schwingungen pro Zeiteinheit. Es gilt:

$$f = \frac{1}{T} \quad \left(\frac{1}{s} = Hz\right)$$

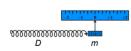

Kreisfrequenz (ω): Anzahl der Schwingungen pro 2π . Es gilt: $\omega = 2\pi f$

Gleichförmige Kreisbewegung – harmonische Schwingung

Rücktreibende Kraft

Was für Kraft ist nötig zur harmonischen Schwingung?

Eigenschwingung (freie Schwingung)

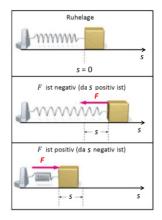

Voraussetzung: Durch eine einmalige Einwirkung wird ein Oszillator in Schwingung gebracht.

Eigenschwingung: ohne weitere Einwirkungen ablaufende Schwingung.

Eigenfequenz: die Frequenz einer Eigenschwingung.

Sie wird durch die Eigenschaften des Oszillators (Masse, geometrische Größen, Materialeigenschaften usw.) bestimmt.

Federpendel



$$f_{\text{Eigen}} = \frac{1}{2\pi} \sqrt{\frac{D}{m}}$$

Die Formel gilt nur im Idealfall, wenn die Schwingung harmonisch (also nicht gedämpft) ist. In der Wirklichkeit gibt es immer Energieverluste (Reibung, Luftwiderstand, ...), und die Schwingung wird gedämpft.

Rücktreibende Kraft

 $F = -D \cdot s$

Für die rücktreibende Kraft gilt:

- Ständig zur Ruhelage gerichtet
- · Proportional zur Auslenkung, aber in entgegengesetzter Richtung (negatives Vorzeichen)

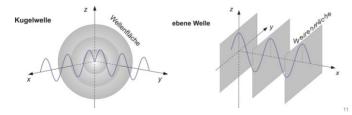
Übung

Die Aufgabe bezieht sich auf das Video "Bestimmung der Körpermasse im Weltraum": Die Periodenzeit des für die Messung verwendeten Federpendels mit einer Masse von 6,5 kg betrug 0,75 s. Mit dem Austronauten erhöhte sich diese Periodenzeit auf 2,7 s. Errechnen Sie die Körpermasse des Astronauten.

Erzwungene Schwingung

Schwingung unter dem Einfluss einer äußeren periodischen Erregungskraft.

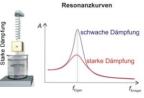
Die eine Stimmgabel wird angeschlagen, die erzeugte Luftdruckschwankungen versetzen auch die andere Stimmgabel in Schwingung (falls beide auf die gleiche Tonhöhe abgestimmt sind).


- Durch die erzwungene Schwingung kann die harmonische Schwingung mit einer konstanten Amplitude trotz der Energieverluste aufrechterhalten werden.
- Dabei nimmt das schwingende System die Frequenz des Erregers an.

Grundbegriffe der Wellenlehre

- · Ausbreitung eines Schwingungszustandes in einem schwingungsfähigen Medium
- Eine zeitlich und räumlich periodische Änderung einer physikalischen Größe

Wellenfläche oder Wellenfront: Eine Fläche, auf der sich alle Punkte in gleicher Phase, d. h. im selben Schwingungszustand, befinden.



Resonanz

- Wird einem schwingungsfähigen System von einem äußeren Erreger periodisch Energie zugeführt, so vollführt es, nach einer gewissen Einschwingzeit, eine erzwungene Schwingung
- Abhängig von der Erregerfrequenz treten unterschiedlich große Schwingungsamplituden auf
- Stimmt die Erregerfrequenz mit der Eigenfrequenz des schwingenden Systems überein, so tritt eine besonders starke erzwungene Schwingung mit sehr großen Amplituden auf
- Das Auftreten von besonders großen Amplituden bei einer bestimmten Frequenz wird als Resonanz bezeichnet, die Frequenz, bei der Resonanz auftritt, heißt Resonanzfrequenz

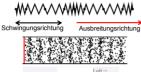
Das Phänomen der Resonanz wird in vielen technischen Geräten ausgenutzt (z. B. MRT. Laser. ...)

Wellenlänge

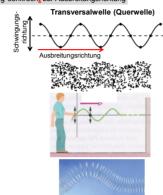
Wellenlänge (λ): Die Länge einer Welle, der Abstand zwischen gleichphasigen Punkten

· Die Wellenlänge ist analog zur Periodenzeit, sie beschreibt die räumliche Periodizität, während die Periodenzeit die zeitliche Periodizität charakterisiert.

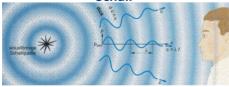
Zusammenhang zwischen Wellenlänge und Periodenzeit (bzw. Frequenz):


der Welle

Bemerkung: Der Zusammenhang hat allgemeine Gültigkeit, er gilt für jegliche Wellen (für mechanische, elektromagnetische Wellen, auch für Materiewellen)


Longitudinal- und Transversalwellen

Abhängig davon, wie die Auslenkungsrichtung (Schwingungsrichtung) und die Wellenaus-breitungsrichtung zueinander stehen, unterscheidet man Longitudinal- und Transversalwellen:

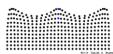

- Longitudinalwellen: Schwingungsrichtung parallel zur Ausbreitungsrichtung
 Transversalwellen: Schwingungsrichtung senkrecht zur Ausbreitungsrichtung
 - Longitudinalwelle (Längswelle)

Schall

 Schallwellen sind mechanische Wellen und k\u00f6nnen auf Grundlage des menschlichen H\u00f6rens in vier Bereiche eingeteilt werden:

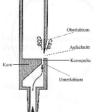
Schallbereiche	Infraschall	Hörschall	Ultraschall	Hyperschall
Frequenzwerte (Hz)	< 20	20-20 000	20 000-10°	109 <

 Die Schallgeschwindigkeit ist im Allgemeinen in Gasen kleiner als in Flüssigkeiten und in Flüssigkeiten kleiner als in Festkörpern


Stoff	c _{Schall} (m/s)	
Luft (0°C, 101 kPa)	330	
Helium (0°C, 101 kPa)	965	
Wasser (20°C)	1483	
Fettgewebe	1470	
Muskelgewebe	1568	
Knochen (kompakt)	3600	
Eisen	5950	

Mechanische Wellen

- Sind unbedingt an die Bewegung von Materie gebunden (benötigen einen Träger)
- Bewegung von Materiestücken z.B.:
 - · Wasserwellen (Wasser)
 - Schallwellen (Luft)



- Können sowohl Longitudinal- als auch Transversalwellen darstellen
- Mechanische Longitudinalwellen k\u00f6nnen sich in jedem Medium ausbreiten, mechanische Transversalwellen nur in Festk\u00f6rpern
- Mit der Ausbreitung der Wellen ist ein Energietransport, aber kein Materietransport verbunden

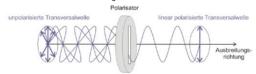
14

Exkurs: Erzeugung von Schallwellen

Übung

Der Delfin sendet Schallwellen mit einer Wellenlänge von 7 mm aus.

a) Berechnen Sie die Frequenz im Wasser.

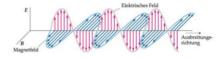


- b) Zu welchem Frequenzbereich gehört dieser Schall?
- c) Die Schallwellen treten aus dem Wasser in die Luft heraus. Berechnen Sie die Frequenz in der Luft.
- d) Berechnen Sie die Wellenlänge in der Luft.

17

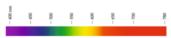
(Lineare) Polarisation

- Bei Transversalwellen stehen Schwingungs-und Ausbreitungsrichtung senkrecht zueinander
- Die Schwingungsrichtung ist dabei aber noch nicht genau definiert, obwohl sie die ganze Zeit senkrecht zur Ausbreitungsrichtung steht (= unpolarisierte Welle)
- Die "Auswahl" einer Schwingungsrichtung (Schwingungsebene) mit Hilfe eines Polarisators wird lineare Polarisation genannt

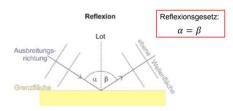

Polarisation von Licht Ein Beispiel: Polarisationsmikroskop

Exkurs: Elektromagnetische Wellen

· Wellen aus gekoppelten elektrischen und magnetischen Feldern

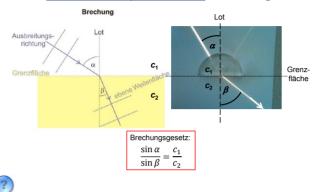


- Das elektromagnetische Feld ist das schwingungsfähige Medium, sodass sich diese Wellen auch im Vakuum ausbreiten k\u00f6nnen
- Beschreiben Transversalwellen (die somit polarisiert werden können)
- Alle elektromagnetischen Wellen breiten sich im Vakuum mit derselben Geschwindigkeit, der Lichtgeschwindigkeit aus:


 $c = 299 792 458 \text{ m/s} \approx 3.108 \text{ m/s}$

Licht – die bekannteste elektromagnetische Welle

 Das sichtbare Spektrum des Lichts umfasst den Wellenlängenbereich von ca. 380 nm–780 nm (VIS-Bereich) → 400 nm–800 nm


Grenzflächenphänomene: Reflexion

Grenzflächenphänomene: Brechung

Übung

Ein Lichtstrahl fällt aus Plexiglas auf die Grenzfläche Plexiglas/Luft. Die Einfalls- und brechungswinkel sind in dem Bild zu sehen. Errechnen Sie die Lichtgeschwindigkeit im Plexiglas.

21

23

Überlagerung zweier oder mehrerer Wellenzüge

• bei gleichen Wellenlängen

• bei festen Phasenbeziehungen

Welle 2

Resultierende Welle

Welle 2

Resultierende Welle

Welle 2

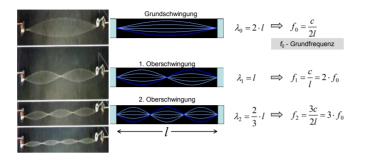
Resultierende Welle

Interferenz

Welle 1

Welle 1

Reflexion einer Welle

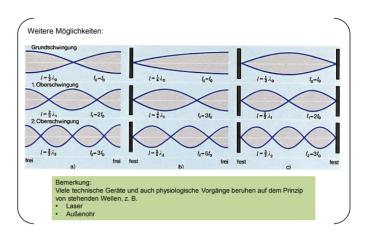

am freien Ende

schwing ungsbauche
Schwingungsknoten

- Entstehen durch Überlagerung zweier gegenläufiger ebener Wellen gleicher Frequenz und gleicher Amplitude (z.B. Überlagerung von reflektierter und einfallender Welle)
- · Alle Punkte schwingen mit gleicher Phase, aber unterschiedlicher Amplitude
- · An einem festen Ende befindet sich ein Knotenpunkt
- · An einem freien Ende befindet sich ein Schwingungsbauch

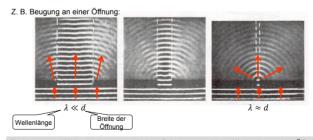
4

Z. B.: Ein System mit zwei festen Enden (beide sind Knotenpunkte)


Bemerkung:
Die Grundfrequenz einer Geigesalte z. B. kann eingestellt werden durch
• die Variierung der Länge der Salte

- die Variierung deSpannungszustandes der Saite (→ Ausbreitungsgeschwindigkeit)

Übung


Eine Geigesaite ist 20 cm lang. Die Wellen laufen entlang der Saite mit einer Geschwindigkeit von 176 m/s. Berechnen Sie a) die Wellenlänge und die Frequenz der Grundschwingung

b) die Wellenlänge und die Frequenz der 1. Oberschwingung

Beugung (Diffraktion)

Abweichung von der ursprünglichen Ausbreitungsrichtung einer Welle am Rand einer Öffnung oder eines Hindernisses



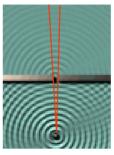
Eindringen von Wellen in den geometrischen Schattenraum hinter Hindernissen oder Öffnungen

- · Abhängig von dem Verhältnis der Größe des Hindernisses bzw. der Öffnung und der Wellenlänge ist die Beugung mehr oder weniger stark ausgeprägt

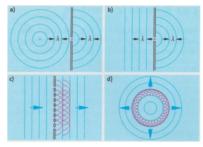
 Das Phänomen der Beugung tritt umso deutlicher auf, je:

· kleiner das Hindernis oder die Öffnung sind (bei konstanter Wellenlänge)

· größer die Wellenlänge ist (bei konstanter Öffnung)



Die Beugung des Lichts limitiert die Auflösung von optischen Geräten, wie Mikroskop, Auge usw.


Hausaufgaben: Grundskript Kapitel 9

Huygenssches Prinzip

- Jeder Punkt einer Wellenfront kann als Ausgangspunkt einer neuen kugelförmigen Welle, der sogenannten Elementarwelle, betrachtet werden
- Die Elementarwelle breitet sich mit gleicher Geschwindigkeit und Frequenz wie die ursprüngliche Welle aus
- Die Einhüllende einer Wellenfront ergibt die neue Wellenfront

